
Deep Neural Network based Image Recognition
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Image recognition is a challenging problem that has recently received much attention in computer vision and machine learning. This book presents a comprehensive overview of the problem of image recognition based on deep neural network. we present an approach to recognize digits using four models i.e. Logistic Regression Model (LRM), Support Vector Machine (SVM), Back Propagation Neural Network (BPNN) & Convolutional Neural Network (CNN). Face recognition is a biometric system used to identify or verify a person from a digital image mostly used in security and surveillance purpose. Thus, we are inspired to inspect the effectiveness of deep neural network on face recognition. we present a deep neural network architecture referred as HOG-CNN for face recognition. The goal is to face recognize faces in real time i.e. using webcam, from a photograph or from a set of faces tracked in a video. This book also presents an approach to recognize objects in real time i.e. using webcam, from a photograph or from a set of objects tracked in a video. von Ahamed, Hafiz und Alam, Ishraq
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Hafiz Ahamed, Completed B.Sc. in engineering from Dept. of Mechatronics Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh.
- Hardcover
- 256 Seiten
- Erschienen 2023
- Wiley & Sons
- Kartoniert
- 360 Seiten
- Erschienen 2018
- Manning
- Gebunden
- 206 Seiten
- Erschienen 2018
- Springer
- Hardcover
- 272 Seiten
- Erschienen 1996
- Wiley-Interscience
- Kartoniert
- 361 Seiten
- Erschienen 2017
- Manning
- Gebunden
- 282 Seiten
- Erschienen 2017
- Springer
- Kartoniert
- 232 Seiten
- Erschienen 2017
- O'Reilly
- Hardcover
- 386 Seiten
- Erschienen 2009
- Medical Information Science...
- Taschenbuch
- 504 Seiten
- Erschienen 2020
- Springer
- Kartoniert
- 350 Seiten
- Erschienen 2020
- O'Reilly Media
- Gebunden
- 496 Seiten
- Erschienen 2020
- Rheinwerk Computing
- hardcover
- 458 Seiten
- Erschienen 2015
- Wiley-VCH
- Kartoniert
- 574 Seiten
- Erschienen 2010
- Springer
- Gebunden
- 738 Seiten
- Erschienen 2011
- Springer