Deep Learning for Biometrics
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined.Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches for gesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories.Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning. von Bhanu, Bir und Kumar, Ajay
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Dr. Bir Bhanu is Bourns Presidential Chair, Distinguished Professor of Electrical and Computer Engineering and the Director of the Center for Research in Intelligent Systems at the University of California at Riverside, USA. Some of his other Springer publications include the titles Video Bioinformatics, Distributed Video Sensor Networks, and Human Recognition at a Distance in Video. Dr. Ajay Kumar is an Associate Professor in the Department of Computing at the Hong Kong Polytechnic University.
- Gebunden
- 206 Seiten
- Erschienen 2018
- Springer
- Gebunden
- 179 Seiten
- Erschienen 2019
- Springer
- Kartoniert
- 350 Seiten
- Erschienen 2020
- O'Reilly Media
- Hardcover
- 372 Seiten
- Erschienen 2019
- Packt Publishing
- Gebunden
- 264 Seiten
- Erschienen 2009
- Springer
- Gebunden
- 738 Seiten
- Erschienen 2011
- Springer
- Hardcover -
- Erschienen 2017
- Springer
- Kartoniert
- 992 Seiten
- Erschienen 2017
- O'Reilly Media
- Gebunden
- 282 Seiten
- Erschienen 2017
- Springer
- Gebunden
- 718 Seiten
- Erschienen 2017
- Springer
- Taschenbuch
- 504 Seiten
- Erschienen 2020
- Springer
- Gebunden
- 341 Seiten
- Erschienen 2009
- Springer
- Gebunden
- 832 Seiten
- Erschienen 2017
- Wiley
- Gebunden
- 471 Seiten
- Erschienen 2013
- Springer




