
Introduction to Deep Learning
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website.Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism.This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology. von Skansi, Sandro
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Dr. Sandro Skansi is an Assistant Professor of Logic at the University of Zagreb and Lecturer in Data Science at University College Algebra, Zagreb, Croatia.
- Kartoniert
- 445 Seiten
- Erschienen 2020
- dpunkt.verlag GmbH
- Kartoniert
- 360 Seiten
- Erschienen 2018
- Manning
- Gebunden
- 206 Seiten
- Erschienen 2018
- Springer
- Kartoniert
- 292 Seiten
- Erschienen 2020
- O'Reilly
- Kartoniert
- 247 Seiten
- Erschienen 2020
- O'Reilly
- Hardcover
- 372 Seiten
- Erschienen 2019
- Packt Publishing
- paperback
- 590 Seiten
- Erschienen 2021
- MedMantra, LLC
- Kartoniert
- 362 Seiten
- Erschienen 2017
- O'Reilly
- Kartoniert
- 358 Seiten
- Erschienen 2020
- O'Reilly
- Gebunden
- 282 Seiten
- Erschienen 2017
- Springer
- Hardcover
- 272 Seiten
- Erschienen 1996
- Wiley-Interscience
- paperback
- 459 Seiten
- Erschienen 2022
- O'Reilly Media