 
Realtime Data Mining
Kurzinformation
 Handgeprüfte Gebrauchtware
Handgeprüfte Gebrauchtware
 Schnelle Lieferung
Schnelle Lieferung
 Faire Preise
Faire Preise
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
¿¿¿¿Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data.¿ The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's "classic" data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed. This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization. von Paprotny, Alexander und Thess, Michael
Produktdetails
 
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Gebunden
- 250 Seiten
- Erschienen 2011
- Springer
- Gebunden
- 302 Seiten
- Erschienen 2008
- Springer
- Hardcover
- 224 Seiten
- Erschienen 2017
- John Wiley & Sons Inc
- paperback
- 459 Seiten
- Erschienen 2022
- O'Reilly Media
- Hardcover
- 480 Seiten
- Erschienen 2014
- John Wiley & Sons Inc
- Gebunden
- 440 Seiten
- Erschienen 2017
- De Gruyter Oldenbourg
- hardcover
- 336 Seiten
- Erschienen 2021
- Wiley
- Kartoniert
- 190 Seiten
- Erschienen 2016
- Technics Publications
- Gebunden
- 402 Seiten
- Erschienen 2021
- Carl Hanser Verlag GmbH & C...
- Kartoniert
- 352 Seiten
- Erschienen 2021
- mitp Verlags GmbH & Co. KG
- Kartoniert
- 310 Seiten
- Erschienen 2018
- O'Reilly Media
- Kartoniert
- 179 Seiten
- Erschienen 2018
- Springer



 

