Klimaneutrales UnternehmenFaire PreiseSchneller & kostenloser Versand
Machine Learning Models and Algorithms for Big Data Classification

Machine Learning Models and Algorithms for Big Data Classification

128,39 €

inkl. MwSt. versandkostenfrei

Lieferzeit 1 Werktag(e)

Kurzinformation
Sprache:
Englisch
ISBN:
148997640X
Seitenzahl:
355
Auflage:
-
Erschienen:
2015-11-01
Dein Kauf tut Gutes! Mit diesem Kauf trägst Du zur Neupflanzung eines Baumes bei. Jeder Baum zählt! Green Tree

Gebrauchte Bücher kaufen

Information
Das Buch befindet sich in einem sehr guten, unbenutzten Zustand.
Information
Das Buch befindet sich in einem sehr guten, gelesenen Zustand. Die Seiten und der Einband sind intakt. Buchrücken/Ecken/Kanten können leichte Gebrauchsspuren aufweisen.
Information
Das Buch befindet sich in einem guten, gelesenen Zustand. Die Seiten und der Einband sind intakt. Buchrücken/Ecken/Kanten können Knicke/Gebrauchsspuren aufweisen.
Information
Das Buch befindet sich in einem lesbaren Zustand. Die Seiten und der Einband sind intakt, jedoch weisen Buchrücken/Ecken/Kanten starke Knicke/Gebrauchsspuren auf. Zusatzmaterialien können fehlen.

Neues Buch oder eBook (pdf) kaufen

Information
Neuware - verlagsfrische aktuelle Buchausgabe.
Natural CO2 neutral
Coins Faire Preise
Check Schnelle & einfache Abwichlung
128,39 €

inkl. MwSt. versandkostenfrei

Lieferzeit 1 Werktag(e)

128,39 €

inkl. MwSt. versandkostenfrei


Beschreibung

Machine Learning Models and Algorithms for Big Data Classification
Thinking with Examples for Effective Learning

This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems. von Suthaharan, Shan

Produktdetails

Einband:
Gebunden
Seitenzahl:
355
Erschienen:
2015-11-01
Sprache:
Englisch
EAN:
9781489976406
ISBN:
148997640X
Gewicht:
735 g
Auflage:
-
Verwandte Sachgebiete:

Über den Autor

Shan Suthaharan is a Professor of Computer Science at the University of North Carolina at Greensboro (UNCG), North Carolina, USA. He also serves as the Director of Undergraduate Studies at the Department of Computer Science at UNCG. He has more than twenty-five years of university teaching and administrative experience, and has taught both undergraduate and graduate courses. His aspiration is to educate and train students so that they can prosper in the computer field by understanding current real-world and complex problems, and develop efficient techniques and technologies. His current teaching interests include big data analytics and machine learning, cryptography and network security, and computer networking and analysis. He earned his doctorate in Computer Science from Monash University, Australia. Since then, he has been actively working on disseminating his knowledge and experience through teaching, advising, seminars, research, and publications. Dr. Suthaharan enjoys investigating real-world, complex problems, and developing and implementing algorithms to solve those problems using modern technologies. The main theme of his current research is the signature discovery and event detection for a secure and reliable environment. The ultimate goal of his research is to build a secure and reliable environment using modern and emerging technologies. His current research primarily focuses on the characterization and detection of environmental events, the exploration of machine learning techniques, and the development of advanced statistical and computational techniques to discover key signatures and detect emerging events from structured and unstructured big data. Dr. Suthaharan has authored or co-authored more than seventy-five research papers in the areas of computer science, and published them in international journals and referred conference proceedings. He also invented a key management and encryption technology, which has been patented in Australia, Japan, and Singapore. He also received visiting scholar awards from and served as a visiting researcher at the University of Sydney, Australia; the University of Melbourne, Australia; and the University of California, Berkeley, USA. He was a senior member of the Institute of Electrical and Electronics Engineers, and volunteered as an elected chair of the Central North Carolina Section twice. He is a member of Sigma Xi, the Scientific Research Society, and a Fellow of the Institution of Engineering and Technology.


Entdecke mehr vom Verlag


Kundenbewertungen

0
Kundenbewertungen für "Machine Learning Models and Algorithms for Big Data Classification"
Bewertung schreiben
Bewertungen werden nach Überprüfung freigeschaltet.

Die mit einem * markierten Felder sind Pflichtfelder.

Ich habe die Datenschutzbestimmungen zur Kenntnis genommen.


Neu
128,39 €
Zuletzt angesehen
Entdecke mehr Gebrauchtes für Dich
frontend/listing/product-box/box-product-slider.tpl
Preismanagement für Telekommunikationsdienstleistungen Preismanagement für...
Schön-Peterson, Cornelia
22,14 €
frontend/listing/product-box/box-product-slider.tpl
Die Familienstrategie Die Familienstrategie
Baus, Kirsten
10,62 €
frontend/listing/product-box/box-product-slider.tpl
Non-Profit-Organisationen in die Zukunft entwickeln Non-Profit-Organisationen in die Zukunft...
Heimannsberg, Barbara;Namok...
9,65 €
frontend/listing/product-box/box-product-slider.tpl
Mein neuer Job! Impuls für Ihre Karriere Mein neuer Job! Impuls für Ihre Karriere
Zeylmans van Emmichoven, Vi...
2,19 €
frontend/listing/product-box/box-product-slider.tpl
Mitarbeitergespräche Mitarbeitergespräche
Mentzel, Wolfgang
3,60 €
frontend/listing/product-box/box-product-slider.tpl
frontend/listing/product-box/box-product-slider.tpl
Developing International Strategies Developing International Strategies
Grünig, Rudolf;Morschett, D...
14,89 €
frontend/listing/product-box/box-product-slider.tpl
frontend/listing/product-box/box-product-slider.tpl
frontend/listing/product-box/box-product-slider.tpl