LeafKlimaneutrales Unternehmen CoinFaire Preise PackageSchneller und kostenloser Versand ab 14,90 € Bestellwert
Deep Learning. Das umfassende Handbuch

Deep Learning. Das umfassende Handbuch

inkl. MwSt. Versandinformationen

Artikel zZt. nicht lieferbar

Artikel zZt. nicht lieferbar

Kurzinformation
Sprache:
Deutsch
ISBN:
3958457002
Seitenzahl:
883
Auflage:
-
Erschienen:
2018-11-01
Dieser Artikel steht derzeit nicht zur Verfügung!

Gebrauchte Bücher kaufen

Information
Das Buch befindet sich in einem sehr guten, unbenutzten Zustand.
Information
Das Buch befindet sich in einem sehr guten, gelesenen Zustand. Die Seiten und der Einband sind intakt. Buchrücken/Ecken/Kanten können leichte Gebrauchsspuren aufweisen.
Information
Das Buch befindet sich in einem guten, gelesenen Zustand. Die Seiten und der Einband sind intakt. Buchrücken/Ecken/Kanten können Knicke/Gebrauchsspuren aufweisen.
Information
Das Buch befindet sich in einem lesbaren Zustand. Die Seiten und der Einband sind intakt, jedoch weisen Buchrücken/Ecken/Kanten starke Knicke/Gebrauchsspuren auf. Zusatzmaterialien können fehlen.

Neues Buch oder eBook (pdf) kaufen

Information
Neuware - verlagsfrische aktuelle Buchausgabe.
Natural Handgeprüfte Gebrauchtware
Coins Schnelle Lieferung
Check Faire Preise

inkl. MwSt. Versandinformationen

Artikel zZt. nicht lieferbar

Artikel zZt. nicht lieferbar

Weitere Zahlungsmöglichkeiten  
Zahlungsarten

Beschreibung

Deep Learning. Das umfassende Handbuch
Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansätze

Mathematische Grundlagen für Machine und Deep Learning Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning. In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt. In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf. Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt. Teil I: Angewandte Mathematik und Grundlagen für das Machine Learning Lineare Algebra Wahrscheinlichkeits- und Informationstheorie Bayessche Statistik Numerische Berechnung Teil II: Deep-Learning-Verfahren Tiefe Feedforward-Netze Regularisierung Optimierung beim Trainieren tiefer Modelle Convolutional Neural Networks Sequenzmodellierung für Rekurrente und Rekursive Netze Praxisorientierte Methodologie Anwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache Teil III: Deep-Learning-Forschung Lineare Faktorenmodelle Autoencoder Representation Learning Probabilistische graphische Modelle Monte-Carlo-VerfahrenDie Partitionsfunktion Approximative Inferenz Tiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m. von Goodfellow, Ian;Bengio, Yoshua;Courville, Aaron;

Produktdetails

Einband:
Kartoniert
Seitenzahl:
883
Erschienen:
2018-11-01
Sprache:
Deutsch
EAN:
9783958457003
ISBN:
3958457002
Gewicht:
1535 g
Auflage:
-
Verwandte Sachgebiete:
Alle gebrauchten Bücher werden von uns handgeprüft.
So garantieren wir Dir zu jeder Zeit Premiumqualität.

Über den Autor

Ian Goodfellow ist Research Scientist der Organisation OpenAI, einer Non-Profit-Organisation, die sich mit der Erforschung von Künstlicher Intelligenz beschäftigt und für die Elon Musk ein zentraler Geldgeber ist. Yoshua Bengio ist Professor of Computer Science an der Université de Montréal. Aaron Courville ist Assistant Professor of Computer Science an der Université de Montréal.


Entdecke mehr vom Verlag


Neu
80,00 €
Entdecke mehr Gebrauchtes für Dich
frontend/listing/product-box/box-product-slider.tpl
frontend/listing/product-box/box-product-slider.tpl