Tensorflow for Deep Learning
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar
Beschreibung
Learn how to solve challenging machine learning problems with TensorFlow, Google's revolutionary new software library for deep learning. If you have some background in basic linear algebra and calculus, this practical book introduces machine-learning fundamentals by showing you how to design systems capable of detecting objects in images, understanding text, analyzing video, and predicting the properties of potential medicines. TensorFlow for Deep Learning teaches concepts through practical examples and helps you build knowledge of deep learning foundations from the ground up. It's ideal for practicing developers with experience designing software systems, and useful for scientists and other professionals familiar with scripting but not necessarily with designing learning algorithms.Learn TensorFlow fundamentals, including how to perform basic computationBuild simple learning systems to understand their mathematical foundationsDive into fully connected deep networks used in thousands of applicationsTurn prototypes into high-quality models with hyperparameter optimizationProcess images with convolutional neural networksHandle natural language datasets with recurrent neural networksUse reinforcement learning to solve games such as tic-tac-toeTrain deep networks with hardware including GPUs and tensor processing units von Ramsundar, Bharath;Zadeh, Reza;
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Bharath Ramsundar received a BA and BS from UC Berkeley in EECS and Mathematics and was valedictorian of his graduating class in mathematics. He is currently a PhD student in computer science at Stanford University with the Pande group. His research focuses on the application of deep-learning to drug-discovery. In particular, Bharath is the lead-developer and creator of DeepChem.io, an open source package founded on TensorFlow that aims to democratize the use of deep-learning in drug-discovery. He is supported by a Hertz Fellowship, the most selective graduate fellowship in the sciences.Reza Bosagh Zadeh is Founder CEO at Matroid and Adjunct Professor at Stanford University. His work focuses on Machine Learning, Distributed Computing, and Discrete Applied Mathematics. Reza received his PhD in Computational Mathematics from Stanford University under the supervision of Gunnar Carlsson. His awards include a KDD Best Paper Award and the Gene Golub Outstanding Thesis Award. He has served on the Technical Advisory Boards of Microsoft and Databricks. As part of his research, Reza built the Machine Learning Algorithms behind Twitter's who-to-follow system, the first product to use Machine Learning at Twitter. Reza is the initial creator of the Linear Algebra Package in Apache Spark and his work has been incorporated into industrial and academic cluster computing environments. In addition to research, Reza designed and teaches two PhD-level classes at Stanford: Distributed Algorithms and Optimization (CME 323), and Discrete Mathematics and Algorithms (CME 305).
- Hardcover
- 380 Seiten
- Erschienen 2018
- Springer
- Hardcover
- 852 Seiten
- Erschienen 2016
- Springer
- Hardcover
- 288 Seiten
- Erschienen 2023
- Wiley-IEEE Press
- Hardcover
- 240 Seiten
- Erschienen 2021
- Wiley-IEEE Press
- Hardcover -
- Erschienen 2017
- Springer
- Hardcover
- 329 Seiten
- Erschienen 2022
- Apress