Support Vector Machines
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Every mathematical discipline goes through three periods of development: the naive, the formal, and the critical. David Hilbert The goal of this book is to explain the principles that made support vector machines (SVMs) a successful modeling and prediction tool for a variety of applications. We try to achieve this by presenting the basic ideas of SVMs together with the latest developments and current research questions in a uni?ed style. In a nutshell, we identify at least three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and last but not least their computational e?ciency compared with several other methods. Although there are several roots and precursors of SVMs, these methods gained particular momentum during the last 15 years since Vapnik (1995, 1998) published his well-known textbooks on statistical learning theory with aspecialemphasisonsupportvectormachines. Sincethen,the?eldofmachine learninghaswitnessedintenseactivityinthestudyofSVMs,whichhasspread moreandmoretootherdisciplinessuchasstatisticsandmathematics. Thusit seems fair to say that several communities are currently working on support vector machines and on related kernel-based methods. Although there are many interactions between these communities, we think that there is still roomforadditionalfruitfulinteractionandwouldbegladifthistextbookwere found helpful in stimulating further research. Many of the results presented in this book have previously been scattered in the journal literature or are still under review. As a consequence, these results have been accessible only to a relativelysmallnumberofspecialists,sometimesprobablyonlytopeoplefrom one community but not the others.
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Ingo Steinwart is a researcher in the machine learning group at the Los Alamos National Laboratory. He works on support vector machines and related methods.Andreas Christmann is Professor of Stochastics in the Department of Mathematics at the University o
- Hardcover -
- Erschienen 2015
- Springer
- paperback
- 516 Seiten
- Erschienen 2018
- Wiley-VCH
- Hardcover
- 411 Seiten
- Erschienen 2012
- Hogrefe Verlag
- paperback
- 662 Seiten
- Erschienen 2016
- Routledge
- Gebunden
- 738 Seiten
- Erschienen 2011
- Springer
- Gebunden
- 832 Seiten
- Erschienen 2017
- Wiley
- hardcover
- 251 Seiten
- Erschienen 1976
- De Gruyter
- Kartoniert
- 794 Seiten
- Erschienen 2015
- Routledge
- hardcover
- 422 Seiten
- Erschienen 2018
- Cambridge University Pr.
- Kartoniert
- 688 Seiten
- Erschienen 2021
- Springer Gabler
- Gebunden
- 820 Seiten
- Erschienen 2015
- Springer
- Hardcover -
- Erschienen 2006
- Vieweg+Teubner Verlag
- Gebunden
- 514 Seiten
- Erschienen 2008
- Springer
- Hardcover
- 456 Seiten
- Erschienen 2000
- Wiley-Interscience
- Kartoniert
- 165 Seiten
- Erschienen 2020
- De Gruyter
- Kartoniert
- 992 Seiten
- Erschienen 2017
- O'Reilly Media




