Skalierbare KI/ML-Infrastrukturen
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar
Beschreibung
Wie Sie abseits der Hypes resiliente, hochautomatisierte und autoskalierbare Systeme für Produktiv-Workloads aufbauen, zeigt Ihnen Oliver Liebel in diesem Wegweiser. Sie erfahren, wie Sie NVIDIAs Datacenter-GPUs nahtlos in Hypervisoren und moderne Container-Infrastrukturen integrieren, sie Operator-gestützt mit Kubernetes bzw. OpenShift verwalten und daraus praxistaugliche Setups machen.
Betrachtet wird der ganze Infrastruktur-Stack: Von On-Premises-Installationen auf vSphere oder Cloud-Setups auf GCP und AWS über Plattform-Automation per IaaS/IaC sowie den GPU- und Network-Operatoren bis hin zu einem Ausblick auf AI End-to-End-Tool-Stacks.
Aus dem Inhalt:
- KI/ML: Grundlagen und Use Cases
- Infrastruktur planen: On-Premises, Cloud oder Hybrid?
- Technischer Background: KI/ML mit NVIDIA-GPUs
- GPU-Modi: Passthrough-MIG vs. MIG-backed vGPU vs. vGPU
- NVIDIA-GPUs auf vSphere On-Prem implementieren
- NVIDIA AI Enterprise
- KI/ML-Cluster mit Kubernetes und OpenShift
- GPU-spezifische Operatoren
- GPU-Cluster mit OpenShift
- Von CI/CD über GitOps zu MLOps
- ML-Pipelines & AI End-to-End
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Dipl.-Ing. Oliver Liebel ist LPI-zertifizierter Linux-Enterprise-Experte undoffizieller Business Partner von SUSE und Red Hat. Als Dozent, Autor, Berater und Projektleiter ist er seit vielen Jahren für namhafte Unternehmen, internationale Konzerne und Institutionen auf Landes- und Bundesebene tätig. Dabei blickt er auf 25 Jahre Berufserfahrung zurück.
- Hardcover
- 306 Seiten
- Erschienen 2019
- Packt Publishing