
Building Machine Learning Powered Applications
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Learn the skills necessary to design, build, and deploy applications powered by machine learning (ML). Through the course of this hands-on book, you'll build an example ML-driven application from initial idea to deployed product. Data scientists, software engineers, and product managers—including experienced practitioners and novices alike—will learn the tools, best practices, and challenges involved in building a real-world ML application step by step.Author Emmanuel Ameisen, an experienced data scientist who led an AI education program, demonstrates practical ML concepts using code snippets, illustrations, screenshots, and interviews with industry leaders. Part I teaches you how to plan an ML application and measure success. Part II explains how to build a working ML model. Part III demonstrates ways to improve the model until it fulfills your original vision. Part IV covers deployment and monitoring strategies.This book will help you:Define your product goal and set up a machine learning problemBuild your first end-to-end pipeline quickly and acquire an initial datasetTrain and evaluate your ML models and address performance bottlenecksDeploy and monitor your models in a production environment von Ameisen, Emmanuel
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Emmanuel Ameisen has worked for years as a Data Scientist. He implemented and deployed predictive analytics and machine learning solutions for Local Motion and Zipcar. Recently, Emmanuel has led Insight Data Science's AI program where he oversaw more than a hundred machine learning projects. Emmanuel holds graduate degrees in artificial intelligence, computer engineering, and management from three of France's top schools.
- Hardcover
- 256 Seiten
- Erschienen 2022
- Wiley & Sons
- Hardcover
- 256 Seiten
- Erschienen 2023
- Wiley & Sons
- Hardcover
- 156 Seiten
- Erschienen 2024
- O'Reilly
- Kartoniert
- 768 Seiten
- Erschienen 2021
- mitp
- Hardcover
- 288 Seiten
- Erschienen 2015
- Wiley
- Hardcover
- 272 Seiten
- Erschienen 2022
- Wiley-IEEE Press
- Gebunden
- 206 Seiten
- Erschienen 2018
- Springer
- paperback
- 459 Seiten
- Erschienen 2022
- O'Reilly Media
- Kartoniert
- 822 Seiten
- Erschienen 2020
- O'Reilly
- Hardcover
- 352 Seiten
- Erschienen 2020
- Wiley-Scrivener