Principles of Neural Information Theory: Computational Neuroscience and Metabolic Efficiency
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
The brain is the most complex computational machine known to science, even though its components (neurons) are slow and unreliable compared to a laptop computer. In this richly illustrated book, Shannon's mathematical theory of information is used to explore the metabolic efficiency of neurons, with special reference to visual perception. Evidence from a diverse range of research papers is used to show how information theory defines absolute limits on neural efficiency; limits which ultimately determine the neuroanatomical microstructure of the eye and brain. Written in an informal style, with a comprehensive glossary, tutorial appendices, explainer boxes, and a list of annotated Further Readings, this book is an ideal introduction to cutting-edge research in neural information theory. von Stone, James V.
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Dr James Stone is an Honorary Reader in Vision and Computational Neuroscience at the University of Sheffield, England.
- Gebunden
- 209 Seiten
- Erschienen 2018
- Hogrefe AG
- hardcover
- 400 Seiten
- Erschienen 2008
- Academic Press
- Kartoniert
- 252 Seiten
- Erschienen 2000
- Thieme
- hardcover -
- Erschienen 1996
- Thieme, Stuttgart
- Gebunden
- 564 Seiten
- Erschienen 2015
- Lippincott Williams&Wilki
- paperback
- 288 Seiten
- Erschienen 2013
- Springer




