LeafKlimaneutrales Unternehmen CoinFaire Preise PackageSchneller und kostenloser Versand ab 14,90 € Bestellwert
Machine Learning Kochbuch

Machine Learning Kochbuch

Du sparst 27,00 € (73%)

inkl. MwSt. Versandinformationen

Lieferzeit 1-3 Werktage

9,90 €

Lieferzeit 1-3 Werktage

Kurzinformation
Sprache:
Deutsch
ISBN:
9783960090908
Verlag:
Seitenzahl:
-
Auflage:
-
Erschienen:
2019-04
Mit diesem Kauf sparst Du 2,06 kg CO2

Mehr Informationen zum Zustand
Green Tree

Gebrauchte Bücher kaufen

Information
Das Buch befindet sich in einem sehr guten, unbenutzten Zustand.
Information
Das Buch befindet sich in einem sehr guten, gelesenen Zustand. Die Seiten und der Einband sind intakt. Buchrücken/Ecken/Kanten können leichte Gebrauchsspuren aufweisen.
  • Sauberer Zustand, Seiten und Bindung etwas abgenutzt
  • Knicke oder Markierungen nicht mehr als 5%
  • CDs und Zugangscodes verwendbar
Information
Das Buch befindet sich in einem guten, gelesenen Zustand. Die Seiten und der Einband sind intakt. Buchrücken/Ecken/Kanten können Knicke/Gebrauchsspuren aufweisen.
Information
Das Buch befindet sich in einem lesbaren Zustand. Die Seiten und der Einband sind intakt, jedoch weisen Buchrücken/Ecken/Kanten starke Knicke/Gebrauchsspuren auf. Zusatzmaterialien können fehlen.

Neues Buch oder eBook (pdf) kaufen

Information
Neuware - verlagsfrische aktuelle Buchausgabe.
Natural Handgeprüfte Gebrauchtware
Coins Schnelle Lieferung
Check Faire Preise
Du sparst 27,00 € (73%)

inkl. MwSt. Versandinformationen

Lieferzeit 1-3 Werktage

9,90 €

Lieferzeit 1-3 Werktage

Weitere Zahlungsmöglichkeiten  
Zahlungsarten

Beschreibung

Machine Learning Kochbuch
Praktische Lösungen mit Python: von der Vorverarbeitung der Daten bis zum Deep Learning

Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind - von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen - wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen "Chris hat den Kochbuchcharakter seines Buchs genutzt, um nicht nur eine Referenz für erfahrene Profis zu bieten, sondern auch eine leicht zugängliche Reihe von kleinen Tutorials, die Anfänger schätzen werden. Dieses Buch ist eine wertvolle Ressource, egal ob man sein Wissen vor einem Vorstellungsgespräch als Data Scientist auffrischen möchte oder eine prägnante und dennoch gründliche Referenz für den Schreibtisch sucht." - Justin Bozonier Leitender Data Scientist bei Grubhub von Albon, Chris;

Produktdetails

Einband:
Taschenbuch
Erschienen:
2019-04
Sprache:
Deutsch
EAN:
9783960090908
ISBN:
9783960090908
Verlag:
Gewicht:
672 g
Auflage:
-
Alle gebrauchten Bücher werden von uns handgeprüft.
So garantieren wir Dir zu jeder Zeit Premiumqualität.

Über den Autor


Entdecke mehr vom Verlag


Gut
9,90 €
Entdecke mehr zum Thema
frontend/listing/product-box/box-product-slider.tpl