
Principles of Data Mining
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This book explains and explores the principal techniques of Data Mining, the automatic extraction of implicit and potentially useful information from data, which is increasingly used in commercial, scientific and other application areas. It focuses on classification, association rule mining and clustering.Each topic is clearly explained, with a focus on algorithms not mathematical formalism, and is illustrated by detailed worked examples. The book is written for readers without a strong background in mathematics or statistics and any formulae used are explained in detail.It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science.As an aid to self-study, it aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field.Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included.Principles of Data Mining includes descriptions of algorithms for classifying streaming data, both stationary data, where the underlying model is fixed, and data that is time-dependent, where the underlying model changes from time to time - a phenomenon known as concept drift. The expanded fourth edition gives a detailed description of a feed-forward neural network with backpropagation and shows how it can be used for classification. von Bramer, Max
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Max Bramer is Emeritus Professor of Information Technology at the University of Portsmouth, England, Vice-President of the International Federation for Information Processing (IFIP) and Chair of the British Computer Society Specialist Group on Artificial Intelligence. He has been actively involved since the 1980s in the field that has since come to be called by names such as Data Mining, Knowledge Discovery in Databases, Big Data and Predictive Analytics. He has carried out many projects in the field, particularly in relation to automatic classification of data, and has published extensively in the technical literature. He has taught the subject to both undergraduate and postgraduate students for many years. Some of Max Bramer's other Springer publications include: Research and Development in Intelligent Systems Artificial Intelligence in Theory and Practice Artificial Intelligence: an International Perspective Logic Programming with Prolog Web Programming with PHP and MySQL
- Hardcover
- 624 Seiten
- Erschienen 2007
- Springer
- Hardcover
- 220 Seiten
- Erschienen 2004
- Elsevier Science
- Taschenbuch
- 218 Seiten
- Erschienen 2012
- Morgan & Claypool Publishers
- Klappenbroschur
- 320 Seiten
- Erschienen 2020
- De Gruyter Oldenbourg
- Kartoniert
- 514 Seiten
- Erschienen 2002
- Springer
- Gebunden
- 334 Seiten
- Erschienen 2007
- Springer
- Hardcover
- 488 Seiten
- Erschienen 2016
- Springer
- Hardcover
- 312 Seiten
- Erschienen 2001
- Springer
- Hardcover
- 480 Seiten
- Erschienen 2014
- John Wiley & Sons Inc
- Gebunden
- 368 Seiten
- Erschienen 2012
- Springer
- Kartoniert
- 309 Seiten
- Erschienen 2022
- Springer Vieweg
- Kartoniert
- 190 Seiten
- Erschienen 2016
- Technics Publications
- Gebunden
- 208 Seiten
- Erschienen 2017
- tredition
- Gebunden
- 371 Seiten
- Erschienen 2021
- dpunkt.verlag GmbH
- hardcover
- 304 Seiten
- Erschienen 1994
- John Wiley & Sons
- paperback -
- Erschienen 2015
- Wiley India
- paperback
- 488 Seiten
- Erschienen 2018
- Springer
- Gebunden
- 440 Seiten
- Erschienen 2017
- De Gruyter Oldenbourg
- Gebunden
- 211 Seiten
- Erschienen 2015
- Springer