Exploitation of Linkage Learning in Evolutionary Algorithms
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
One major branch of enhancing the performance of evolutionary algorithms is the exploitation of linkage learning. This monograph aims to capture the recent progress of linkage learning, by compiling a series of focused technical chapters to keep abreast of the developments and trends in the area of linkage. In evolutionary algorithms, linkage models the relation between decision variables with the genetic linkage observed in biological systems, and linkage learning connects computational optimization methodologies and natural evolution mechanisms. Exploitation of linkage learning can enable us to design better evolutionary algorithms as well as to potentially gain insight into biological systems. Linkage learning has the potential to become one of the dominant aspects of evolutionary algorithms; research in this area can potentially yield promising results in addressing the scalability issues. von Chen, Ying-Ping
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Gebunden
- 387 Seiten
- Erschienen 1998
- Springer
- hardcover
- 456 Seiten
- Erschienen 1995
- Wiley VCH
- hardcover
- 576 Seiten
- Erschienen 1997
- Springer
- Gebunden
- 326 Seiten
- Erschienen 2007
- Springer
- paperback
- 849 Seiten
- Erschienen 2021
- Springer
- Gebunden
- 360 Seiten
- Erschienen 2009
- Springer
- Gebunden
- 312 Seiten
- Erschienen 2018
- Springer
- Gebunden
- 377 Seiten
- Erschienen 2003
- Springer
- Kartoniert
- 291 Seiten
- Erschienen 2016
- Springer Spektrum
- Gebunden
- 308 Seiten
- Erschienen 2016
- Wiley-VCH




