
Group Identities on Units and Symmetric Units of Group Rings
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Let FG be the group ring of a group G over a field F. Write U(FG) for the group of units of FG. It is an important problem to determine the conditions under which U(FG) satisfies a group identity. In the mid 1990s, a conjecture of Hartley was verified, namely, if U(FG) satisfies a group identity, and G is torsion, then FG satisfies a polynomial identity. Necessary and sufficient conditions for U(FG) to satisfy a group identity soon followed. Since the late 1990s, many papers have been devoted to the study of the symmetric units; that is, those units u satisfying u* = u, where * is the involution on FG defined by sending each element of G to its inverse. The conditions under which these symmetric units satisfy a group identity have now been determined. This book presents these results for arbitrary group identities, as well as the conditions under which the unit group or the set of symmetric units satisfies several particular group identities of interest.
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- perfect
- 196 Seiten
- Erschienen 2013
- Springer
- paperback
- 504 Seiten
- Erschienen 1982
- Springer US
- hardcover
- 182 Seiten
- Erschienen 1977
- Springer
- hardcover
- 520 Seiten
- Erschienen 1987
- Springer
- Hardcover
- 652 Seiten
- Erschienen 2014
- Springer
- paperback
- 548 Seiten
- Erschienen 1999
- Springer
- Hardcover
- 296 Seiten
- Erschienen 2013
- Leske + Budrich Verlag
- Taschenbuch
- 242 Seiten
- Erschienen 2008
- Dover Pubn Inc
- Taschenbuch
- 460 Seiten
- Erschienen 2009
- Oxford University Press, USA
- Hardcover
- 448 Seiten
- Erschienen 2009
- John Wiley & Sons Inc