Machine Learning Theory and Applications
Kurzinformation
inkl. MwSt. Versandinformationen
Lieferzeit 1-3 Werktage
Lieferzeit 1-3 Werktage
Beschreibung
Enables readers to understand mathematical concepts behind data engineering and machine learning algorithms and apply them using open-source Python libraries Machine Learning Theory and Applications delves into the realm of machine learning and deep learning, exploring their practical applications by comprehending mathematical concepts and implementing them in real-world scenarios using Python and renowned open-source libraries. This comprehensive guide covers a wide range of topics, including data preparation, feature engineering techniques, commonly utilized machine learning algorithms like support vector machines and neural networks, as well as generative AI and foundation models. To facilitate the creation of machine learning pipelines, a dedicated open-source framework named hephAIstos has been developed exclusively for this book. Moreover, the text explores the fascinating domain of quantum machine learning and offers insights on executing machine learning applications across diverse hardware technologies such as CPUs, GPUs, and QPUs. Finally, the book explains how to deploy trained models through containerized applications using Kubernetes and OpenShift, as well as their integration through machine learning operations (MLOps). Additional topics covered in Machine Learning Theory and Applications include: Current use cases of AI, including making predictions, recognizing images and speech, performing medical diagnoses, creating intelligent supply chains, natural language processing, and much more Classical and quantum machine learning algorithms such as quantum-enhanced Support Vector Machines (QSVMs), QSVM multiclass classification, quantum neural networks, and quantum generative adversarial networks (qGANs) Different ways to manipulate data, such as handling missing data, analyzing categorical data, or processing time-related data Feature rescaling, extraction, and selection, and how to put your trained models to life and production through containerized applications Machine Learning Theory and Applications is an essential resource for data scientists, engineers, and IT specialists and architects, as well as students in computer science, mathematics, and bioinformatics. The reader is expected to understand basic Python programming and libraries such as NumPy or Pandas and basic mathematical concepts, especially linear algebra. von Vasques, Xavier
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Hardcover
- 256 Seiten
- Erschienen 2022
- Wiley & Sons
- paperback
- 515 Seiten
- Erschienen 2020
- Springer
- Hardcover
- 852 Seiten
- Erschienen 2016
- Springer
- Hardcover
- 256 Seiten
- Erschienen 2023
- Wiley & Sons
- Gebunden
- 368 Seiten
- Erschienen 2012
- Springer
- Hardcover
- 608 Seiten
- Erschienen 2023
- Wiley
- Hardcover
- 329 Seiten
- Erschienen 2022
- Apress
- Hardcover
- 448 Seiten
- Erschienen 2020
- Wiley-Scrivener
- paperback
- 584 Seiten
- Erschienen 1994
- MIT Press
- Hardcover
- 220 Seiten
- Erschienen 2004
- Elsevier Science
- Hardcover
- 272 Seiten
- Erschienen 2022
- Wiley-IEEE Press
- Kartoniert
- 350 Seiten
- Erschienen 2020
- O'Reilly Media
- Hardcover
- 432 Seiten
- Erschienen 2023
- Wiley & Sons
- Hardcover
- 432 Seiten
- Erschienen 2023
- Wiley-IEEE Press
- Klappenbroschur
- 370 Seiten
- Erschienen 2021
- De Gruyter
- Hardcover
- 436 Seiten
- Erschienen 2010
- Springer
- Kartoniert
- 198 Seiten
- Erschienen 2019
- O'Reilly