Riemannian Manifolds
Kurzinformation
inkl. MwSt. Versandinformationen
Lieferzeit 1-3 Werktage
Lieferzeit 1-3 Werktage
Beschreibung
This book is designed as a textbook for a one-quarter or one-semester graduate course on Riemannian geometry, for students who are familiar with topological and differentiable manifolds. It focuses on developing an intimate acquaintance with the geometric meaning of curvature. In so doing, it introduces and demonstrates the uses of all the main technical tools needed for a careful study of Riemannian manifolds. The author has selected a set of topics that can reasonably be covered in ten to fifteen weeks, instead of making any attempt to provide an encyclopedic treatment of the subject. The book begins with a careful treatment of the machinery of metrics, connections, and geodesics,without which one cannot claim to be doing Riemannian geometry. It then introduces the Riemann curvature tensor, and quickly moves on to submanifold theory in order to give the curvature tensor a concrete quantitative interpretation. From then on, all efforts are bent toward proving the four most fundamental theorems relating curvature and topology: the Gauss¿Bonnet theorem (expressing the total curvature of a surface in term so fits topological type), the Cartan¿Hadamard theorem (restricting the topology of manifolds of nonpositive curvature), Bonnet¿s theorem (giving analogous restrictions on manifolds of strictly positive curvature), and a special case of the Cartan¿Ambrose¿Hicks theorem (characterizing manifolds of constant curvature). Many other results and techniques might reasonably claim a place in an introductory Riemannian geometry course, but could not be included due to time constraints. von Lee, John M.
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Hardcover
- 252 Seiten
- Erschienen 1976
- Springer
- Hardcover
- 388 Seiten
- Erschienen 1991
- Springer
- Hardcover
- 240 Seiten
- Erschienen 2009
- Springer
- paperback
- 548 Seiten
- Erschienen 2010
- Springer
- Hardcover -
- Erschienen 2005
- Wiley-VCH
- Hardcover -
- Erschienen 1997
- Springer
- Taschenbuch
- 232 Seiten
- Erschienen 2003
- ICP
- Hardcover
- 176 Seiten
- Erschienen 2012
- Springer
- Hardcover
- 376 Seiten
- Erschienen 1997
- World Scientific
- Hardcover
- 155 Seiten
- Erschienen 2017
- Edizioni della Normale
- Hardcover
- 320 Seiten
- Erschienen 2009
- Springer