LeafKlimaneutrales Unternehmen CoinFaire Preise PackageSchneller und kostenloser Versand ab 14,90 € Bestellwert
Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn

Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn

inkl. MwSt. Versandinformationen

Artikel zZt. nicht lieferbar

Artikel zZt. nicht lieferbar

Kurzinformation
Sprache:
Deutsch
ISBN:
374750213X
Verlag:
Seitenzahl:
768
Auflage:
-
Erschienen:
2021-03-12
Dieser Artikel steht derzeit nicht zur Verfügung!

Gebrauchte Bücher kaufen

Information
Das Buch befindet sich in einem sehr guten, unbenutzten Zustand.
Information
Das Buch befindet sich in einem sehr guten, gelesenen Zustand. Die Seiten und der Einband sind intakt. Buchrücken/Ecken/Kanten können leichte Gebrauchsspuren aufweisen.
Information
Das Buch befindet sich in einem guten, gelesenen Zustand. Die Seiten und der Einband sind intakt. Buchrücken/Ecken/Kanten können Knicke/Gebrauchsspuren aufweisen.
Information
Das Buch befindet sich in einem lesbaren Zustand. Die Seiten und der Einband sind intakt, jedoch weisen Buchrücken/Ecken/Kanten starke Knicke/Gebrauchsspuren auf. Zusatzmaterialien können fehlen.

Neues Buch oder eBook (pdf) kaufen

Information
Neuware - verlagsfrische aktuelle Buchausgabe.
Natural Handgeprüfte Gebrauchtware
Coins Schnelle Lieferung
Check Faire Preise

inkl. MwSt. Versandinformationen

Artikel zZt. nicht lieferbar

Artikel zZt. nicht lieferbar

Weitere Zahlungsmöglichkeiten  
Zahlungsarten

Beschreibung

Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn
Das umfassende Praxis-Handbuch für Data Science, Deep Learning und Predictive Analytics

- Datenanalyse mit ausgereiften statistischen Modellen des Machine Learnings - Anwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, Keras, TensorFlow 2, Pandas und Matplotlib - Best Practices zur Optimierung Ihrer Machine-Learning-Algorithmen Mit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert. Die dritte Auflage dieses Buchs wurde für TensorFlow 2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dazu zählen insbesondere die neuen Features der Keras-API, das Synthetisieren neuer Daten mit Generative Adversarial Networks (GANs) sowie die Entscheidungsfindung per Reinforcement Learning. Ein sicherer Umgang mit Python wird vorausgesetzt. Aus dem Inhalt: - Trainieren von Lernalgorithmen und Implementierung in Python - Gängige Klassifikationsalgorithmen wie Support Vector Machines (SVM), Entscheidungsbäume und Random Forest - Natural Language Processing zur Klassifizierung von Filmbewertungen - Clusteranalyse zum Auffinden verborgener Muster und Strukturen in Ihren Daten - Deep-Learning-Verfahren für die Bilderkennung - Datenkomprimierung durch Dimensionsreduktion - Training Neuronaler Netze und GANs mit TensorFlow 2 - Kombination verschiedener Modelle für das Ensemble Learning - Einbettung von Machine-Learning-Modellen in Webanwendungen - Stimmungsanalyse in Social Networks - Modellierung sequenzieller Daten durch rekurrente Neuronale Netze - Reinforcement Learning und Implementierung von Q-Learning-Algorithmen von Raschka, Sebastian;Mirjalili, Vahid;

Produktdetails

Einband:
Kartoniert
Seitenzahl:
768
Erschienen:
2021-03-12
Sprache:
Deutsch
EAN:
9783747502136
ISBN:
374750213X
Verlag:
Gewicht:
1264 g
Auflage:
-
Alle gebrauchten Bücher werden von uns handgeprüft.
So garantieren wir Dir zu jeder Zeit Premiumqualität.

Über den Autor

Sebastian Raschka ist Assistant Professor für Statistik an der University of Wisconsin-Madison, wo er an der Entwicklung neuer Deep-Learning-Architekturen im Gebiet der Biometrie forscht. Er leitete verschiedene Seminare u.a. auf der SciPy-Konferenz. Vahid Mirjalili erforschte mehrere Jahre an der Michigan State University Anwendungen des Machine Learnings in verschiedenen Computer-Vision-Projekten. Heute ist er in der Forschung des Unternehmens 3M im Bereich Machine Learning tätig.


Entdecke mehr vom Verlag


Neu
49,99 €
Entdecke mehr zum Thema