LeafKlimaneutrales Unternehmen CoinFaire Preise PackageSchneller und kostenloser Versand ab 9,90 € Bestellwert
Deep Reinforcement Learning

Deep Reinforcement Learning

inkl. MwSt. Versandinformationen

Artikel zZt. nicht lieferbar

10,00 €

Artikel zZt. nicht lieferbar

Kurzinformation
Sprache:
Deutsch
ISBN:
3747500366
Seitenzahl:
762
Auflage:
-
Erschienen:
2020-07-01
Dieser Artikel steht derzeit nicht zur Verfügung!

Gebrauchte Bücher kaufen

Information
Das Buch befindet sich in einem sehr guten, unbenutzten Zustand.
Information
Das Buch befindet sich in einem sehr guten, gelesenen Zustand. Die Seiten und der Einband sind intakt. Buchrücken/Ecken/Kanten können leichte Gebrauchsspuren aufweisen.
Information
Das Buch befindet sich in einem guten, gelesenen Zustand. Die Seiten und der Einband sind intakt. Buchrücken/Ecken/Kanten können Knicke/Gebrauchsspuren aufweisen.
Information
Das Buch befindet sich in einem lesbaren Zustand. Die Seiten und der Einband sind intakt, jedoch weisen Buchrücken/Ecken/Kanten starke Knicke/Gebrauchsspuren auf. Zusatzmaterialien können fehlen.

Neues Buch oder eBook (pdf) kaufen

Information
Neuware - verlagsfrische aktuelle Buchausgabe.
Natural Premiumqualität
Coins Faire Preise
Check Schnelle & einfache Abwicklung

inkl. MwSt. Versandinformationen

Artikel zZt. nicht lieferbar

10,00 €

Artikel zZt. nicht lieferbar


Beschreibung

Deep Reinforcement Learning
Das umfassende Praxis-Handbuch. Moderne Algorithmen für Chatbots, Robotik, diskrete Optimierung und Web-Automatisierung inkl. Multiagenten-Methoden

Alle wichtigen Methoden und Algorithmen praxisnah erläutert mit Codebeispielen in Python Selbstständig lernende Agenten programmieren für die Steuerung von Robotern, NLP in interaktiven Spielen, Chatbots und mehr Deep Q-Networks, Wertiteration, Policy Gradients, Trust Region Policy Optimization (TRPO), genetische Algorithmen, moderne Explorationsverfahren u.v.m. Reinforcement Learning ist ein Teilgebiet des Machine Learnings. Hierbei werden selbstständig lernende Agenten programmiert, deren Lernvorgang ausschließlich durch ein Belohnungssystem und die Beobachtung der Umgebung gesteuert wird. In diesem umfassenden Praxis-Handbuch zeigt Ihnen Maxim Lapan, wie Sie diese zukunftsweisende Technologie in der Praxis einsetzen. Sie lernen, wie Sie passende RL-Methoden für Ihre Problemstellung auswählen und mithilfe von Deep-Learning-Methoden Agenten für verschiedene Aufgaben trainieren wie zum Beispiel für das Lösen eines Zauberwürfels, für Natural Language Processing in Microsofts TextWorld-Umgebung oder zur Realisierung moderner Chatbots. Alle Beispiele sind so gewählt, dass sie leicht verständlich sind und Sie diese auch ohne Zugang zu sehr großer Rechenleistung umsetzen können. Unter Einsatz von Python und der Bibliothek PyTorch ermöglicht Ihnen der Autor so einen einfachen und praktischen Einstieg in die Konzepte und Methoden des Reinforcement Learnings wie Deep Q-Networks, Wertiteration, Policy Gradients, Trust Region Policy Optimization (TRPO), genetische Algorithmen und viele mehr. Es werden grundlegende Kenntnisse in Machine Learning und Deep Learning sowie ein sicherer Umgang mit Python vorausgesetzt. Aus dem Inhalt: Implementierung komplexer Deep-Learning-Modelle mit RL in tiefen neuronalen Netzen Ermitteln der passenden RL-Methoden für verschiedene Problemstellungen, darunter DQN, Advantage Actor Critic, PPO, TRPO, DDPG, D4PG und mehr Bauen und Trainieren eines kostengünstigen Hardware-Roboters NLP in Microsofts TextWorld-Umgebung für interaktive Spiele Diskrete Optimierung für das Lösen von Zauberwürfeln Trainieren von Agenten für Vier Gewinnt mittels AlphaGo Zero Die neuesten Deep-RL-Methoden für Chatbots Moderne Explorationsverfahren wie verrauschte Netze und Netz-Destillation von Lapan, Maxim

Produktdetails

Einband:
Kartoniert
Seitenzahl:
762
Erschienen:
2020-07-01
Sprache:
Deutsch
EAN:
9783747500361
ISBN:
3747500366
Gewicht:
1280 g
Auflage:
-
Verwandte Sachgebiete:
Alle gebrauchten Bücher werden von uns handgeprüft.
So garantieren wir Dir zu jeder Zeit Premiumqualität.

Über den Autor

Maxim Lapan ist Deep-Learning-Enthusiast und unabhängiger Forscher. Er hat langjährige Berufserfahrung mit Big Data und Machine Learning und beschäftigt sich derzeit insbesondere mit praktischen Anwendungen des Deep Learnings wie NLP und Deep Reinforcement Learning.


Entdecke mehr vom Verlag


Kundenbewertungen

0
Kundenbewertungen für "Deep Reinforcement Learning"
Bewertung schreiben
Bewertungen werden nach Überprüfung freigeschaltet.

Die mit einem * markierten Felder sind Pflichtfelder.

Mit * markierte Felder sind Pflichtangaben

Ich habe die Datenschutzbestimmungen zur Kenntnis genommen.


Neu
10,00 €
Entdecke mehr Gebrauchtes für Dich
frontend/listing/product-box/box-product-slider.tpl