
Machine Learning for Cyber Physical Systems
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS ¿ Machine Learning for Cyber Physical Systems, which was held in Lemgo, October 25th-26th, 2017. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments. von Beyerer, Jürgen und Niggemann, Oliver und Maier, Alexander
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Prof. Dr.-Ing. Jürgen Beyerer is Professor at the Department for Interactive Real-Time Systems at the Karlsruhe Institute of Technology. In addition he manages the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB. Dr. Alexander Maier is head of group Machine Learning at Fraunhofer IOSB-INA. His focus is on the development of algorithms for big data applications in Cyber-Physical Systems (diagnostics, optimization, predictive maintenance) and the transfer of research results to industry. Prof. Dr. Oliver Niggemann is Professor for Artificial Intelligence in Automation. His research interests are in the fields of machine learning and data analysis for Cyber-Physical Systems and in the fields of planning and diagnosis of distributed systems. He is a board member of the research institute inIT and deputy director at the Fraunhofer Application Center Industrial Automation INA located in Lemgo.
- Gebunden -
- Erschienen 2016
- Springer
- Gebunden
- 738 Seiten
- Erschienen 2011
- Springer
- Hardcover
- 256 Seiten
- Erschienen 2023
- Wiley & Sons
- Gebunden
- 206 Seiten
- Erschienen 2018
- Springer
- Hardcover
- 352 Seiten
- Erschienen 2020
- Wiley-Scrivener
- Hardcover -
- Erschienen 2017
- Springer
- Kartoniert
- 390 Seiten
- Erschienen 2020
- O'Reilly Media
- Hardcover
- 432 Seiten
- Erschienen 2023
- Wiley & Sons
- Hardcover
- 240 Seiten
- Erschienen 2023
- Wiley-Scrivener
- hardcover
- 146 Seiten
- Erschienen 2022
- Wiley-IEEE Press