
Self-Adaptive Heuristics for Evolutionary Computation
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves. This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts. von Kramer, Oliver
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Hardcover
- 336 Seiten
- Erschienen 2000
- De Gruyter
- Kartoniert
- 308 Seiten
- Erschienen 2004
- Hogrefe Verlag
- Hardcover -
- Erschienen 1996
- Waxmann
- Gebunden
- 191 Seiten
- Erschienen 2016
- Shaker
- hardcover
- 192 Seiten
- Erschienen 2015
- Shaker
- pamphlet
- 219 Seiten
- Erschienen 1979
- -
- hardcover -
- Erschienen 2004
- Arbor
- Kartoniert
- 256 Seiten
- Erschienen 2016
- Hogrefe AG
- Gebunden
- 133 Seiten
- Erschienen 2016
- Beltz
- paperback
- 263 Seiten
- Erschienen 2004
- American Psychological Asso...
- hardcover
- 208 Seiten
- Erschienen 2011
- Kösel-Verlag