
Self-Adaptive Heuristics for Evolutionary Computation
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves. This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts. von Kramer, Oliver
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Gebunden
- 387 Seiten
- Erschienen 1998
- Springer
- Hardcover
- 616 Seiten
- Erschienen 2005
- John Wiley & Sons Inc
- Hardcover
- 352 Seiten
- Erschienen 2000
- Oxford University Press
- Gebunden
- 377 Seiten
- Erschienen 2003
- Springer
- Gebunden
- 2264 Seiten
- Erschienen 2012
- Springer
- Kartoniert
- 175 Seiten
- Erschienen 2011
- TibiaPress
- Gebunden
- 554 Seiten
- Erschienen 2004
- Springer
- Hardcover
- 432 Seiten
- Erschienen 2023
- Wiley & Sons
- hardcover
- 834 Seiten
- Erschienen 2006
- Pearson