
Self-Adaptive Heuristics for Evolutionary Computation
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves. This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts. von Kramer, Oliver
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Gebunden
- 387 Seiten
- Erschienen 1998
- Springer
- hardcover
- 576 Seiten
- Erschienen 1997
- Springer
- Hardcover
- 616 Seiten
- Erschienen 2005
- John Wiley & Sons Inc
- Gebunden
- 2264 Seiten
- Erschienen 2012
- Springer
- Gebunden
- 554 Seiten
- Erschienen 2004
- Springer
- hardcover
- 834 Seiten
- Erschienen 2006
- Pearson
- Hardcover
- 256 Seiten
- Erschienen 2023
- Wiley-Scrivener
- Gebunden
- 308 Seiten
- Erschienen 2016
- Wiley-VCH
- paperback
- 462 Seiten
- Erschienen 1991
- MIT Press