Uniqueness Theorems for Variational Problems by the Method of Transformation Groups
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar
Beschreibung
A classical problem in the calculus of variations is the investigation of critical points of functionals {\cal L} on normed spaces V. The present work addresses the question: Under what conditions on the functional {\cal L} and the underlying space V does {\cal L} have at most one critical point?A sufficient condition for uniqueness is given: the presence of a "variational sub-symmetry", i.e., a one-parameter group G of transformations of V, which strictly reduces the values of {\cal L}. The "method of transformation groups" is applied to second-order elliptic boundary value problems on Riemannian manifolds. Further applications include problems of geometric analysis and elasticity. von Reichel, Wolfgang
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Studies: October 1987 -- January 1994 Diplom studies in mathematics at the University of KarlsruheOctober 1991 -- October 1992 Master of Science in nonlinear mathematics, University of Bath (U.K.) Phd: January 1996 University of Karlsruhe Habilitation: October 2001 University of Basel Positions held: March 1994 -- June 1998 Scientific collaborator, Math. Institute, Univ. of KarlsruheOctober 1998 -- September 2002 Assistant, Math. Institute, University of BaselSommersemester 2000: Lecturer at the Univ. of ZurichWintersemester 2002/2003: Substitute professor at the Univ. of Giessen Since April 2003: Substitute professor at the Univ. of Basel Stays at other institutions:October 1996 -- September 1998: postdoc at the Univ. of Minnesota (USA) and Univ. of Cologne with DFG-grantMarch,July, August 1999: visitor at the Univ. of Cardiff (U.K) with EPSRC-grant Awards: April 1997: "Klaus-Tschira Price for comprehensible science" awarded for the doctoral thesis by the Univ. of Karlsruhe
- hardcover
- 398 Seiten
- Erschienen 2011
- Wiley-VCH
- Hardcover
- 252 Seiten
- Erschienen 1976
- Springer
- Hardcover
- 376 Seiten
- Erschienen 1997
- World Scientific
- Hardcover
- 320 Seiten
- Erschienen 2009
- Springer