Introduction to Riemannian Manifolds
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar
Beschreibung
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet's Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem. von Lee, John M.
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
¿John "Jack" M. Lee is a professor of mathematics at the University of Washington. Professor Lee is the author of three highly acclaimed Springer graduate textbooks : Introduction to Smooth Manifolds, (GTM 218) Introduction to Topological Manifolds (GTM 202), and Riemannian Manifolds (GTM 176). Lee's research interests include differential geometry, the Yamabe problem, existence of Einstein metrics, the constraint equations in general relativity, geometry and analysis on CR manifolds.
- Hardcover
- 252 Seiten
- Erschienen 1976
- Springer
- paperback
- 548 Seiten
- Erschienen 2010
- Springer
- Hardcover -
- Erschienen 2005
- Wiley-VCH
- Hardcover -
- Erschienen 1997
- Springer
- Taschenbuch
- 232 Seiten
- Erschienen 2003
- ICP
- Hardcover
- 320 Seiten
- Erschienen 2009
- Springer