Machine Learning Pocket Reference
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar
Beschreibung
With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project.Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You'll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics.This pocket reference includes sections that cover:Classification, using the Titanic datasetCleaning data and dealing with missing dataExploratory data analysisCommon preprocessing steps using sample dataSelecting features useful to the modelModel selectionMetrics and classification evaluationRegression examples using k-nearest neighbor, decision trees, boosting, and moreMetrics for regression evaluationClusteringDimensionality reductionScikit-learn pipelines von Harrison, Matt
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Matt runs MetaSnake, a Python and Data Science training and consulting company. He has over 15 years of experience using Python across a breadth of domains: Data Science, BI, Storage, Testing and Automation, Open Source Stack Management, and Search.
- Hardcover
- 432 Seiten
- Erschienen 2013
- John Wiley & Sons Inc
- Hardcover
- 380 Seiten
- Erschienen 2018
- Springer
- Taschenbuch -
- Erschienen 2021
- For Dummies
- Hardcover
- 608 Seiten
- Erschienen 2023
- Wiley
- Hardcover
- 852 Seiten
- Erschienen 2016
- Springer
- Hardcover
- 329 Seiten
- Erschienen 2022
- Apress