
Applied Predictive Modeling
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner¿s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book¿s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. von Johnson, Kjell;Kuhn, Max;
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson
- Gebunden
- 567 Seiten
- Erschienen 2019
- Springer
- Gebunden
- 334 Seiten
- Erschienen 2007
- Springer
- Gebunden
- 396 Seiten
- Erschienen 2015
- Springer Gabler
- Kartoniert
- 363 Seiten
- Erschienen 2017
- Sage Publications, Inc
- Hardcover
- 456 Seiten
- Erschienen 2000
- Wiley-Interscience
- Kartoniert
- 668 Seiten
- Erschienen 2000
- Springer
- Gebunden
- 284 Seiten
- Erschienen 2014
- Springer
- Hardcover
- 480 Seiten
- Erschienen 1980
- Wiley-Interscience
- paperback
- 374 Seiten
- Erschienen 1974
- The MIT Press
- Taschenbuch
- 432 Seiten
- Erschienen 2011
- Routledge
- Kartoniert
- 520 Seiten
- Erschienen 2003
- Springer
- Hardcover -
- Erschienen 2015
- Springer Gabler
- Hardcover
- 411 Seiten
- Erschienen 2012
- Hogrefe Verlag