Rank-Based Methods for Shrinkage and Selection
Kurzinformation
inkl. MwSt. Versandinformationen
Lieferzeit 1-3 Werktage
Lieferzeit 1-3 Werktage
Beschreibung
Rank-Based Methods for Shrinkage and Selection A practical and hands-on guide to the theory and methodology of statistical estimation based on rank Robust statistics is an important field in contemporary mathematics and applied statistical methods. Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning describes techniques to produce higher quality data analysis in shrinkage and subset selection to obtain parsimonious models with outlier-free prediction. This book is intended for statisticians, economists, biostatisticians, data scientists and graduate students. Rank-Based Methods for Shrinkage and Selection elaborates on rank-based theory and application in machine learning to robustify the least squares methodology. It also includes: * Development of rank theory and application of shrinkage and selection * Methodology for robust data science using penalized rank estimators * Theory and methods of penalized rank dispersion for ridge, LASSO and Enet * Topics include Liu regression, high-dimension, and AR(p) * Novel rank-based logistic regression and neural networks * Problem sets include R code to demonstrate its use in machine learning von Saleh, A. K. Md. Ehsanes
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Hardcover
- 930 Seiten
- Erschienen 2008
- Springer
- Hardcover -
- Erschienen 2019
- Wiley
- Hardcover
- 368 Seiten
- Erschienen 2013
- Wiley
- Hardcover
- 138 Seiten
- Erschienen 2007
- Sage Publications, Inc
- Hardcover
- 208 Seiten
- Erschienen 2010
- Springer
- Hardcover
- 100 Seiten
- Erschienen 1981
- Sage Publications, Inc
- Hardcover
- 480 Seiten
- Erschienen 1980
- Wiley-Interscience
- Hardcover
- 648 Seiten
- Erschienen 2018
- Springer