Intersections of Random Walks
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
A more accurate title for this book would be "Problems dealing with the non-intersection of paths of random walks. " These include: harmonic measure, which can be considered as a problem of nonintersection of a random walk with a fixed set; the probability that the paths of independent random walks do not intersect; and self-avoiding walks, i. e. , random walks which have no self-intersections. The prerequisite is a standard measure theoretic course in probability including martingales and Brownian motion. The first chapter develops the facts about simple random walk that will be needed. The discussion is self-contained although some previous expo sure to random walks would be helpful. Many of the results are standard, and I have made borrowed from a number of sources, especially the ex cellent book of Spitzer [65]. For the sake of simplicity I have restricted the discussion to simple random walk. Of course, many of the results hold equally well for more general walks. For example, the local central limit theorem can be proved for any random walk whose increments have mean zero and finite variance. Some of the later results, especially in Section 1. 7, have not been proved for very general classes of walks. The proofs here rely heavily on the fact that the increments of simple random walk are bounded and symmetric. von Lawler, Gregory F.
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- hardcover
- 346 Seiten
- Erschienen 2004
- Cambridge University Press
- Kartoniert
- 239 Seiten
- Erschienen 2015
- Springer
- Kartoniert
- 408 Seiten
- Erschienen 2003
- Springer
- hardcover
- 465 Seiten
- Erschienen 1998
- Birkhäuser
- hardcover
- 192 Seiten
- Erschienen 2023
- Wiley
- hardcover
- 299 Seiten
- Erschienen 2019
- Wiley
- paperback
- 202 Seiten
- Erschienen 1996
- Mathematical Association of...
- hardcover
- 384 Seiten
- Erschienen 2010
- Oxford University Press
- hardcover
- 863 Seiten
- Erschienen 2019
- Springer
- hardcover
- 278 Seiten
- Erschienen 2017
- World Scientific
- Kartoniert
- 319 Seiten
- Erschienen 2019
- Morawa Lesezirkel GmbH




