Anomaly Detection in Random Heterogeneous Media
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This monograph is concerned with the analysis and numerical solution of a stochastic inverse anomaly detection problem in electrical impedance tomography (EIT). Martin Simon studies the problem of detecting a parameterized anomaly in an isotropic, stationary and ergodic conductivity random field whose realizations are rapidly oscillating. For this purpose, he derives Feynman-Kac formulae to rigorously justify stochastic homogenization in the case of the underlying stochastic boundary value problem. The author combines techniques from the theory of partial differential equations and functional analysis with probabilistic ideas, paving the way to new mathematical theorems which may be fruitfully used in the treatment of the problem at hand. Moreover, the author proposes an efficient numerical method in the framework of Bayesian inversion for the practical solution of the stochastic inverse anomaly detection problem. von Simon, Martin
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Martin Simon has worked as a researcher at the Institute of Mathematics at the University of Mainz from 2008 to 2014. During this period he had several research stays at the University of Helsinki. He has recently joined an asset management company as a financial mathematician.
- paperback
- 488 Seiten
- Erschienen 2018
- Springer
- Gebunden
- 327 Seiten
- Erschienen 2021
- The MIT Press
- hardcover
- 346 Seiten
- Erschienen 2004
- Cambridge University Press
- Hardcover
- 456 Seiten
- Erschienen 2000
- Wiley-Interscience
- Kartoniert
- 148 Seiten
- Erschienen 2022
- Springer
- Hardcover -
- Erschienen 2015
- Springer
- Kartoniert
- 408 Seiten
- Erschienen 2003
- Springer
- hardcover
- 192 Seiten
- Erschienen 2023
- Wiley
- paperback
- 148 Seiten
- Erschienen 1974
- Springer Berlin Heidelberg
- Kartoniert
- 383 Seiten
- Erschienen 2017
- Birkhäuser




