
Ideals and Reality
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Besides giving an introduction to Commutative Algebra - the theory of c- mutative rings - this book is devoted to the study of projective modules and the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are called free. So a finitely generated free R-module is of the form Rn for some n E IN, equipped with the usual operations. A module is called p- jective, iff it is a direct summand of a free one. Especially a finitely generated R-module P is projective iff there is an R-module Q with P @ Q S Rn for some n. Remarkably enough there do exist nonfree projective modules. Even there are nonfree P such that P @ Rm S Rn for some m and n. Modules P having the latter property are called stably free. On the other hand there are many rings, all of whose projective modules are free, e. g. local rings and principal ideal domains. (A commutative ring is called local iff it has exactly one maximal ideal. ) For two decades it was a challenging problem whether every projective module over the polynomial ring k[X1,. . . von Ischebeck, Friedrich;Rao, Ravi A.;
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- perfect -
- Erschienen 1986
- FisicalBook
- paperback
- 415 Seiten
- Erschienen 2013
- Sunni Publications
- paperback
- 168 Seiten
- Erschienen 2014
- Bloomsbury Academic
- Kartoniert
- 221 Seiten
- Erschienen 2016
- Springer Spektrum
- Hardcover
- 356 Seiten
- Erschienen 1998
- JHUP
- Gebunden
- 257 Seiten
- Erschienen 2008
- Wiley-VCH
- paperback
- 480 Seiten
- Erschienen 2008
- MINUIT