Interpretability of Computational Intelligence-Based Regression Models
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar
Beschreibung
The key idea of this book is that hinging hyperplanes, neural networks and support vector machines can be transformed into fuzzy models, and interpretability of the resulting rule-based systems can be ensured by special model reduction and visualization techniques. The first part of the book deals with the identification of hinging hyperplane-based regression trees. The next part deals with the validation, visualization and structural reduction of neural networks based on the transformation of the hidden layer of the network into an additive fuzzy rule base system. Finally, based on the analogy of support vector regression and fuzzy models, a three-step model reduction algorithm is proposed to get interpretable fuzzy regression models on the basis of support vector regression.The authors demonstrate real-world use of the algorithms with examples taken from process engineering, and they support the text with downloadable Matlab code. The book is suitable for researchers, graduate students and practitioners in the areas of computational intelligence and machine learning. von Kenesei, Tamás und Abonyi, János
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- perfect
- 400 Seiten
- Erschienen 1994
- Cuvillier
- Hardcover
- 340 Seiten
- Erschienen 2017
- Springer Gabler
- Taschenbuch
- 154 Seiten
- Erschienen 2022
- Diplomica Verlag
- Taschenbuch
- 720 Seiten
- Erschienen 2001
- Bradford Books
- Hardcover
- 368 Seiten
- Erschienen 2013
- Wiley
- Hardcover
- 138 Seiten
- Erschienen 2007
- Sage Publications, Inc
- Hardcover -
- Erschienen 2023
- Wiley John + Sons
- Hardcover -
- Erschienen 2014
- De Gruyter Oldenbourg
- Hardcover
- 472 Seiten
- Erschienen 1997
- Springer
- Hardcover
- 328 Seiten
- Erschienen 2003
- Cambridge University Press