Interpretability of Computational Intelligence-Based Regression Models
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
The key idea of this book is that hinging hyperplanes, neural networks and support vector machines can be transformed into fuzzy models, and interpretability of the resulting rule-based systems can be ensured by special model reduction and visualization techniques. The first part of the book deals with the identification of hinging hyperplane-based regression trees. The next part deals with the validation, visualization and structural reduction of neural networks based on the transformation of the hidden layer of the network into an additive fuzzy rule base system. Finally, based on the analogy of support vector regression and fuzzy models, a three-step model reduction algorithm is proposed to get interpretable fuzzy regression models on the basis of support vector regression.The authors demonstrate real-world use of the algorithms with examples taken from process engineering, and they support the text with downloadable Matlab code. The book is suitable for researchers, graduate students and practitioners in the areas of computational intelligence and machine learning. von Kenesei, Tamás und Abonyi, János
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Gebunden
- 514 Seiten
- Erschienen 2008
- Springer
- paperback
- 368 Seiten
- Erschienen 2016
- Que
- Kartoniert
- 312 Seiten
- Erschienen 2023
- DIN Media
- Kartoniert
- 178 Seiten
- Erschienen 2018
- Springer
- Taschenbuch
- 545 Seiten
- Erschienen 2020
- Springer Vieweg
- hardcover
- 384 Seiten
- Erschienen 2021
- Wiley
- Gebunden
- 652 Seiten
- Erschienen 2013
- Springer




