
Additive Number Theory: Inverse Problems and the Geometry of Sumsets
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer H - 2, and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. By contrast, in an inverse problem, one starts with a sumset hA, and attempts to describe the structure of the underlying set A. In recent years there has been ramrkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plünnecke, Vosper, and others. This volume includes their results, and culminates with an elegant proof by Ruzsa of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression.
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- hardcover
- 253 Seiten
- Erschienen 1994
- Vieweg+Teubner Verlag
- Pappe
- 208 Seiten
- Erschienen 1997
- Springer
- hardcover
- 368 Seiten
- Erschienen 1986
- Springer
- paperback
- 154 Seiten
- Erschienen 1991
- Akademie Verlag
- Gebunden
- 281 Seiten
- Erschienen 2015
- Springer
- paperback
- 548 Seiten
- Erschienen 1999
- Springer
- paperback
- 232 Seiten
- Erschienen 1991
- Springer
- Hardcover -
- Erschienen 2009
- Springer
- hardcover
- 608 Seiten
- Erschienen 1992
- Springer
- paperback
- 90 Seiten
- Erschienen 2019
- American Mathematical Society
- paperback
- 312 Seiten
- Erschienen 2003
- Springer