Estimating and Correcting the Effects of Model Selection Uncertainty
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Most applied statistical analyses are carried out under model uncertainty, meaning that the model which generated the observations is unknown, and so the data are first used to select one of a set of plausible models by means of some selection criterion. Generally the data are then used to make inferences about some quantity of interest, ignoring model selection uncertainty, i.e. the fact that the selection step was carried out using the same data, and despite the known fact that this leads to invalid inferences. This thesis investigates several issues relating to this problem from both the Bayesian and the frequentist points of view, and offers new suggestions for dealing with it. We examine Bayesian model averaging (BMA) and point out that its frequentist performance is not always well-defined because, in some cases, it is unclear whether BMA methodology is truly Bayesian. We illustrate the point with a "fully Bayesian model averaging" that is applicable when the quantity of interest is parametric.
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Kartoniert
- 277 Seiten
- Erschienen 2009
- Springer
- Hardcover -
- Erschienen 2017
- Springer
- Gebunden
- 688 Seiten
- Erschienen 2017
- Springer
- Gebunden
- 498 Seiten
- Erschienen 2015
- Springer
- Kartoniert
- 148 Seiten
- Erschienen 2022
- Springer
- Kartoniert
- 284 Seiten
- Erschienen 2004
- Springer
- Hardcover
- 456 Seiten
- Erschienen 2000
- Wiley-Interscience
- Kartoniert
- 668 Seiten
- Erschienen 2000
- Springer
- hardcover
- 208 Seiten
- Erschienen 2023
- Wiley-ISTE
- Kartoniert
- 178 Seiten
- Erschienen 2018
- Springer
- Gebunden
- 172 Seiten
- Erschienen 2004
- Springer
- Kartoniert
- 520 Seiten
- Erschienen 2003
- Springer
- Gebunden
- 410 Seiten
- Erschienen 2013
- Springer




