Numerical Models for Differential Problems
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar
Beschreibung
In this text, we introduce the basic concepts for the numerical modeling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics.
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
The Author is Professor and Director of the Chair of Modelling and Scientific Computing (CMCS) at the Institute of Analysis and Scientific Computing of EPFL, Lausanne (Switzerland), since 1998, Professor of Numerical Analysis at the Politecnico di Milano
- Hardcover
- 302 Seiten
- Erschienen 2015
- Wiley-VCH
- Hardcover
- 168 Seiten
- Erschienen 2011
- Birkhäuser
- Hardcover
- 440 Seiten
- Erschienen 1987
- Vieweg + Teubner
- Hardcover
- 328 Seiten
- Erschienen 2023
- Wspc
- paperback
- 464 Seiten
- Erschienen 1978
- Springer Berlin Heidelberg
- paperback
- 244 Seiten
- Erschienen 1978
- Springer Berlin Heidelberg