
Introduction to HPC with MPI for Data Science
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This gentle introduction to High Performance Computing (HPC) for Data Science using the Message Passing Interface (MPI) standard has been designed as a first course for undergraduates on parallel programming on distributed memory models, and requires only basic programming notions.Divided into two parts the first part covers high performance computing using C++ with the Message Passing Interface (MPI) standard followed by a second part providing high-performance data analytics on computer clusters.In the first part, the fundamental notions of blocking versus non-blocking point-to-point communications, global communications (like broadcast or scatter) and collaborative computations (reduce), with Amdalh and Gustafson speed-up laws are described before addressing parallel sorting and parallel linear algebra on computer clusters. The common ring, torus and hypercube topologies of clusters are then explained and global communication procedures on these topologies are studied. This first part closes with the MapReduce (MR) model of computation well-suited to processing big data using the MPI framework.In the second part, the book focuses on high-performance data analytics. Flat and hierarchical clustering algorithms are introduced for data exploration along with how to program these algorithms on computer clusters, followed by machine learning classification, and an introduction to graph analytics. This part closes with a concise introduction to data core-sets that let big data problems be amenable to tiny data problems.Exercises are included at the end of each chapter in order for students to practice the concepts learned, and a final section contains an overall exam which allows them to evaluate how well they have assimilated the material covered in the book. von Nielsen, Frank
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Frank Nielsen is a Professor at École Polytechnique in France where he teaches graduate (vision/graphics) and undergraduate (Java/algorithms),and a senior researcher at Sony Computer Science Laboratories Inc. His research includes Computational information geometry for imaging and learning and he is the author of 3 textbooks and 3 edited books. He is also on the Editorial Board for the Springer Journal of Mathematical Imaging and Vision.
- Taschenbuch
- 442 Seiten
- Erschienen 1996
- Morgan Kaufmann
- paperback
- 459 Seiten
- Erschienen 2022
- O'Reilly Media
- paperback
- 136 Seiten
- Erschienen 2013
- Packt Pub Ltd
- Hardcover
- 288 Seiten
- Erschienen 2024
- ISTE LTD
- Gebunden
- 211 Seiten
- Erschienen 2015
- Springer
- hardcover
- 414 Seiten
- Erschienen 1987
- McGraw-Hill Inc.,US
- Kartoniert
- 309 Seiten
- Erschienen 2022
- Springer Vieweg
- Hardcover
- 624 Seiten
- Erschienen 2007
- Springer
- hardcover
- 852 Seiten
- Erschienen 1991
- Morgan Kaufmann Publishers In
- Gebunden
- 208 Seiten
- Erschienen 2017
- tredition
- Hardcover
- 464 Seiten
- Erschienen 2020
- John Wiley & Sons Inc
- Kartoniert
- 1174 Seiten
- Erschienen 2006
- Springer
- Kartoniert
- 157 Seiten
- Erschienen 2021
- Springer Spektrum