Learning with Partially Labeled and Interdependent Data
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This book develops two key machine learning principles: the semi-supervised paradigm and learning with interdependent data. It reveals new applications, primarily web related, that transgress the classical machine learning framework through learning with interdependent data. The book traces how the semi-supervised paradigm and the learning to rank paradigm emerged from new web applications, leading to a massive production of heterogeneous textual data. It explains how semi-supervised learning techniques are widely used, but only allow a limited analysis of the information content and thus do not meet the demands of many web-related tasks.Later chapters deal with the development of learning methods for ranking entities in a large collection with respect to precise information needed. In some cases, learning a ranking function can be reduced to learning a classification function over the pairs of examples. The book proves that this task can be efficiently tackled in a new framework: learning with interdependent data.Researchers and professionals in machine learning will find these new perspectives and solutions valuable. Learning with Partially Labeled and Interdependent Data is also useful for advanced-level students of computer science, particularly those focused on statistics and learning. von Amini, Massih-Reza und Usunier, Nicolas
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Kartoniert
- 514 Seiten
- Erschienen 2002
- Springer
- Gebunden
- 250 Seiten
- Erschienen 2011
- Springer
- Hardcover -
- Erschienen 2017
- Springer
- Gebunden
- 179 Seiten
- Erschienen 2019
- Springer
- Gebunden
- 347 Seiten
- Erschienen 2017
- Springer
- Gebunden
- 738 Seiten
- Erschienen 2011
- Springer
- Hardcover
- 456 Seiten
- Erschienen 2000
- Wiley-Interscience
- paperback
- 258 Seiten
- Erschienen 1995
- UNIV OF CHICAGO PR
- Gebunden
- 327 Seiten
- Erschienen 2021
- The MIT Press
- Kartoniert
- 624 Seiten
- Erschienen 2022
- Springer
- hardcover
- 330 Seiten
- Erschienen 2010
- Wiley
- hardcover
- 192 Seiten
- Erschienen 2023
- Wiley




