
Symmetric Spaces and the Kashiwara-Vergne Method
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Gathering and updating results scattered in journal articles over thirty years, this self-contained monograph gives a comprehensive introduction to the subject. Its goal is to: - motivate and explain the method for general Lie groups, reducing the proof of deep results in invariant analysis to the verification of two formal Lie bracket identities related to the Campbell-Hausdorff formula (the "Kashiwara-Vergne conjecture"); - give a detailed proof of the conjecture for quadratic and solvable Lie algebras, which is relatively elementary; - extend the method to symmetric spaces; here an obstruction appears, embodied in a single remarkable object called an "e-function"; - explain the role of this function in invariant analysis on symmetric spaces, its relation to invariant differential operators, mean value operators and spherical functions; - give an explicit e-function for rank one spaces (the hyperbolic spaces); - construct an e-function for general symmetric spaces, in the spirit of Kashiwara and Vergne's original work for Lie groups. The book includes a complete rewriting of several articles by the author, updated and improved following Alekseev, Meinrenken and Torossian's recent proofs of the conjecture. The chapters are largely independent of each other. Some open problems are suggested to encourage future research. It is aimed at graduate students and researchers with a basic knowledge of Lie theory. von Rouvière, François
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- perfect
- 196 Seiten
- Erschienen 2013
- Springer
- Hardcover
- 176 Seiten
- Erschienen 2012
- Springer
- hardcover
- 253 Seiten
- Erschienen 1994
- Vieweg+Teubner Verlag
- hardcover
- 251 Seiten
- Erschienen 1976
- De Gruyter
- hardcover
- 406 Seiten
- Erschienen 1982
- De Gruyter
- Taschenbuch
- 460 Seiten
- Erschienen 2009
- Oxford University Press, USA
- paperback
- 141 Seiten
- Erschienen 2003
- Oxford University Press
- hardcover
- 229 Seiten
- Erschienen 1972
- Springer
- hardcover
- 404 Seiten
- Erschienen 1994
- Springer