
Real Quaternionic Calculus Handbook
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Real quaternion analysis is a multi-faceted subject. Created to describe phenomena in special relativity, electrodynamics, spin etc., it has developed into a body of material that interacts with many branches of mathematics, such as complex analysis, harmonic analysis, differential geometry, and differential equations. It is also a ubiquitous factor in the description and elucidation of problems in mathematical physics. In the meantime real quaternion analysis has become a well established branch in mathematics and has been greatly successful in many different directions. This book is based on concrete examples and exercises rather than general theorems, thus making it suitable for an introductory one- or two-semester undergraduate course on some of the major aspects of real quaternion analysis in exercises. Alternatively, it may be used for beginning graduate level courses and as a reference work. With exercises at the end of each chapter and its straightforward writing style the book addresses readers who have no prior knowledge on this subject but have a basic background in graduate mathematics courses, such as real and complex analysis, ordinary differential equations, partial differential equations, and theory of distributions.
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
João Pedro Morais (born 1982) is a Portuguese mathematician working in the areas of Clifford and quaternionic analysis. In 2009 he got his Ph.D. in mathematics from Bauhaus-University Weimar (Germany). At 2010 he joined the Institute of Applied Analysis a
- Gebunden
- 508 Seiten
- Erschienen 2004
- Springer
- Kartoniert
- 165 Seiten
- Erschienen 2020
- De Gruyter
- Gebunden
- 652 Seiten
- Erschienen 2004
- Springer
- paperback
- 59 Seiten
- Erschienen 2005
- Scholarly Publishing Office...
- paperback
- 304 Seiten
- Erschienen 2003
- Springer
- hardcover
- 787 Seiten
- Erschienen 1998
- CRC Press Inc
- perfect -
- Erschienen 1974
- Springer
- hardcover
- 292 Seiten
- Erschienen 2006
- American Mathematical Society
- hardcover
- 582 Seiten
- Erschienen 1999
- John Wiley & Sons
- paperback
- 528 Seiten
- Erschienen 2014
- Springer
- Kartoniert
- 204 Seiten
- Erschienen 2007
- Springer
- paperback
- 640 Seiten
- Erschienen 2001
- John Wiley & Sons Inc
- Gebunden
- 186 Seiten
- Erschienen 2007
- Springer
- paperback
- 288 Seiten
- Erschienen 2023
- Orell Füssli Verlag
- Hardcover
- 690 Seiten
- Erschienen 1967
- Wiley
- hardcover
- 1142 Seiten
- Erschienen 2009
- Houghton Mifflin