
Python Data Science Handbook
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you'll learn how to use:IPython and Jupyter: provide computational environments for data scientists using PythonNumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in PythonPandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in PythonMatplotlib: includes capabilities for a flexible range of data visualizations in PythonScikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms von VanderPlas, Jake
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Jake VanderPlas is a long-time user and developer of the Python scientific stack. He currently works as an interdisciplinary research director at the University of Washington, conducts his own astronomy research, and spends time advising and consulting with local scientists from a wide range of fields.
- Kartoniert
- 309 Seiten
- Erschienen 2022
- Springer Vieweg
- paperback
- 136 Seiten
- Erschienen 2013
- Packt Pub Ltd
- Kartoniert
- 556 Seiten
- Erschienen 2023
- O'Reilly
- Hardcover
- 624 Seiten
- Erschienen 2007
- Springer
- Kartoniert
- 476 Seiten
- Erschienen 2017
- O'Reilly
- Gebunden
- 208 Seiten
- Erschienen 2017
- tredition
- Kartoniert
- 357 Seiten
- Erschienen 2014
- Routledge
- Kartoniert
- 706 Seiten
- Erschienen 2013
- O'Reilly and Associates
- paperback
- 254 Seiten
- Erschienen 2015
- Packt Pub Ltd
- Taschenbuch
- 216 Seiten
- Erschienen 1986
- Wspc
- Hardcover
- 404 Seiten
- Erschienen 2016
- Springer
- Gebunden
- 1079 Seiten
- Erschienen 2020
- Rheinwerk Computing
- Hardcover
- 256 Seiten
- Erschienen 2023
- Wiley & Sons