
Lectures on Vanishing Theorems
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Introduction M. Kodaira's vanishing theorem, saying that the inverse of an ample invert ible sheaf on a projective complex manifold X has no cohomology below the dimension of X and its generalization, due to Y. Akizuki and S. Nakano, have been proven originally by methods from differential geometry ([39J and [1]). Even if, due to J.P. Serre's GAGA-theorems [56J and base change for field extensions the algebraic analogue was obtained for projective manifolds over a field k of characteristic p = 0, for a long time no algebraic proof was known and no generalization to p 0, except for certain lower dimensional manifolds. Worse, counterexamples due to M. Raynaud [52J showed that in characteristic p 0 some additional assumptions were needed. This was the state of the art until P. Deligne and 1. Illusie [12J proved the degeneration of the Hodge to de Rham spectral sequence for projective manifolds X defined over a field k of characteristic p 0 and liftable to the second Witt vectors W2(k). Standard degeneration arguments allow to deduce the degeneration of the Hodge to de Rham spectral sequence in characteristic zero, as well, a re sult which again could only be obtained by analytic and differential geometric methods beforehand. As a corollary of their methods M. Raynaud (loc. cit.) gave an easy proof of Kodaira vanishing in all characteristics, provided that X lifts to W2(k).
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Hardcover
- 300 Seiten
- Erschienen 1971
- Springer
- paperback
- 232 Seiten
- Erschienen 1991
- Springer
- hardcover
- 253 Seiten
- Erschienen 1994
- Vieweg+Teubner Verlag
- hardcover
- 664 Seiten
- Erschienen 2005
- Pearson
- Hardcover
- 504 Seiten
- Erschienen 1973
- Springer
- Pappe
- 208 Seiten
- Erschienen 1997
- Springer
- Hardcover
- 204 Seiten
- Erschienen 1999
- Oxford University Press
- paperback
- 248 Seiten
- Erschienen 2009
- Springer
- Taschenbuch
- 242 Seiten
- Erschienen 2008
- Dover Pubn Inc
- paperback
- 548 Seiten
- Erschienen 1999
- Springer
- paperback -
- Erschienen 2003
- De Gruyter Oldenbourg