
Data-Driven Design of Fault Diagnosis Systems
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
In many industrial applications early detection and diagnosis of abnormal behavior of the plant is of great importance. During the last decades, the complexity of process plants has been drastically increased, which imposes great challenges in development of model-based monitoring approaches and it sometimes becomes unrealistic for modern large-scale processes. The main objective of Adel Haghani Abandan Sari is to study e¿cient fault diagnosis techniques for complex industrial systems using process historical data and considering the nonlinear behavior of the process. To this end, di¿erent methods are presented to solve the fault diagnosis problem based on the overall behavior of the process and its dynamics. Moreover, a novel technique is proposed for fault isolation and determination of the root-cause of the faults in the system, based on the fault impacts on the process measurements. von Haghani Abandan Sari, Adel
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Adel Haghani Abandan Sari is research assistant with Institute of Automation, university of Rostock. His research interests include data-driven process monitoring and fault-tolerant control with focus on large-scale industrial processes.
- Hardcover
- 388 Seiten
- Erschienen 1993
- Springer
- hardcover
- 256 Seiten
- Erschienen 1999
- Springer
- Hardcover
- 352 Seiten
- Erschienen 2020
- Wiley-Scrivener
- hardcover
- 182 Seiten
- Erschienen 1999
- Springer
- Kartoniert
- 303 Seiten
- Erschienen 2013
- Wiley-VCH
- paperback
- 560 Seiten
- Erschienen 2008
- Springer
- Hardcover
- 336 Seiten
- Erschienen 2022
- Wiley-IEEE Press
- hardcover
- 656 Seiten
- Erschienen 2020
- Wiley
- Hardcover
- 352 Seiten
- Erschienen 2018
- Wiley-IEEE Press
- hardcover
- 456 Seiten
- Erschienen 2002
- Butterworth-Heinemann