Differentialgeometrie
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar
Beschreibung
Dieses Buch ist eine Einführung in die Differentialgeometrie und ein passender Begleiter zum Differentialgeometrie-Modul (ein- und zweisemestrig). Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Bei der Neuauflage wurden einige zusätzliche Lösungen zu den Übungsaufgaben ergänzt. Der Inhalt Bezeichnungen sowie Hilfsmittel aus der Analysis - Kurven im IRn - Lokale Flächentheorie, insbes. Drehflächen, Regelflächen, Minimalflächen - Die innere Geometrie von Flächen - Riemannsche Mannigfaltigkeiten - Der Krümmungstensor - Räume konstanter Krümmung - Einstein-Räume - Lösungen zu Übungsaufgaben Die Zielgruppen Studierende der Mathematik und Physik ab dem 4. Semester, Studiengänge Bachelor, Master und Lehramt Der Autor Wolfgang Kühnel ist Professor am Mathematischen Institut der Universität Stuttgart. von Kühnel, Wolfgang
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Wolfgang Kühnel ist Professor am Mathematischen Institut der Universität Stuttgart.
- Hardcover
- 388 Seiten
- Erschienen 2013
- Springer Spektrum
- Hardcover
- 245 Seiten
- Erschienen 2017
- Springer Spektrum
- Hardcover
- 168 Seiten
- Erschienen 2011
- Birkhäuser
- Hardcover
- 240 Seiten
- Erschienen 2009
- Springer
- Hardcover -
- Erschienen 2005
- Wiley-VCH
- Hardcover
- 296 Seiten
- Erschienen 2007
- Springer
- Hardcover
- 784 Seiten
- Erschienen 1995
- Cornelsen Lernhilfen
- Hardcover
- 440 Seiten
- Erschienen 1987
- Vieweg + Teubner
- Hardcover
- 140 Seiten
- Erschienen 2009
- Springer
- paperback
- 244 Seiten
- Erschienen 1978
- Springer Berlin Heidelberg