
Uncertainty Modeling for Data Mining
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing and uncertainty reasoning.Zengchang Qin is an associate professor at the School of Automation Science and Electrical Engineering, Beihang University, China; Yongchuan Tang is an associate professor at the College of Computer Science, Zhejiang University, China. von Qin, Zengchang und Tang, Yongchua
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Gebunden
- 334 Seiten
- Erschienen 2007
- Springer
- Hardcover
- 624 Seiten
- Erschienen 2007
- Springer
- hardcover
- 208 Seiten
- Erschienen 2023
- Wiley-ISTE
- Taschenbuch
- 218 Seiten
- Erschienen 2012
- Morgan & Claypool Publishers
- Hardcover
- 480 Seiten
- Erschienen 1980
- Wiley-Interscience
- Hardcover
- 456 Seiten
- Erschienen 2000
- Wiley-Interscience
- Klappenbroschur
- 320 Seiten
- Erschienen 2020
- De Gruyter Oldenbourg
- Gebunden
- 284 Seiten
- Erschienen 2014
- Springer
- paperback
- 216 Seiten
- Erschienen 1983
- Marcel Dekker Inc
- hardcover
- 192 Seiten
- Erschienen 2012
- Springer