
Uncertainty Modeling for Data Mining
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing and uncertainty reasoning.Zengchang Qin is an associate professor at the School of Automation Science and Electrical Engineering, Beihang University, China; Yongchuan Tang is an associate professor at the College of Computer Science, Zhejiang University, China. von Qin, Zengchang und Tang, Yongchua
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Hardcover -
- Erschienen 2017
- Springer
- Hardcover
- 456 Seiten
- Erschienen 2000
- Wiley-Interscience
- Gebunden
- 250 Seiten
- Erschienen 2011
- Springer
- Kartoniert
- 668 Seiten
- Erschienen 2000
- Springer
- Gebunden
- 302 Seiten
- Erschienen 2008
- Springer
- Kartoniert
- 514 Seiten
- Erschienen 2002
- Springer
- Kartoniert
- 148 Seiten
- Erschienen 2022
- Springer
- hardcover
- 299 Seiten
- Erschienen 2019
- Wiley