
Kobordismentheorie
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
These notes were taken from lectures given by tom Dieck in the win ter-term 1969/70 at the Mathematical Institute in Heidelberg. The aim of the lectures was to introduce the students to cobordism theory and to propagate ideas of Boardman and Quillen about the calculation of cobordism theories with the aid of formal groups. These notes give an enlarged version of the leetures with many details and proofs filled in. A chapter on unitary cobordism has been left out and will appear separately. The eontents of the notes are as follows: In chapter I we recall those parts of differential topology and of the theory of veetor bundles which we will use. This~ only to re wind the reader of well known faets or to give hints at neeessary pre requisites to students willing to learn differential topology. Apart from these faets we assume knowledge of elementary homotopy theory and classical cohomology with coefficients in l2 , characterized by the Eilenberg-Steenrod axioms. In chapter II the (non oriented) bordism homology theory N.(-) is defined by singular manifolds. We verify the axioms of a homology theory. Our approach differs from that of Conner and Floyd [4] in that we only define absolute homology groups and use a system of axioms in which an exact sequence of Mayer-Vietoris type plays the main role.
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Kartoniert
- 632 Seiten
- Erschienen 2019
- Springer VS
- hardcover
- 310 Seiten
- Erschienen 1986
- Nomos
- Kartoniert
- 277 Seiten
- Erschienen 2022
- Vahlen
- paperback
- 212 Seiten
- Erschienen 2009
- VS Verlag für Sozialwissens...
- Kartoniert
- 597 Seiten
- Erschienen 2020
- Nomos
- perfect
- 256 Seiten
- Erschienen 2025
- Haufe
- paperback
- 338 Seiten
- Erschienen 2009
- ibidem-Verlag
- Kartoniert
- 453 Seiten
- Erschienen 2017
- Dietz, J.H.W., Nachf.
- paperback
- 244 Seiten
- Erschienen 2008
- Free Press
- paperback
- 229 Seiten
- Erschienen 2002
- BeltzPVU
- Kartoniert
- 408 Seiten
- Erschienen 2023
- Springer VS