Integralgleichungen
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar
Beschreibung
1.1 Integralgleichungen Eine spezielle Integralgleichung ist aus der Analyse gewöhnlicher Differentialgleichungen wohlbekannt. Das Anfangswertproblem (1.1.1} y'(x)=f(x,y) fürx;:,x , 0 wird durch Integration von x bis x in die Form 0 X (1.1.2} y(x)=yo + 1 f(~.y(~JJd; 0 gebracht, da die Integraldarstellung (2} für den Beweis der Existenz und Eindeutigkeit einer Lösung der Differentialgleichung (1} besser geeignet ist. Allgemein ist eine Integralgleichung eine Gleichung für eine unbekannte Funktion {, wobei f u.a. im Integranden eines Integrals auftritt. Die Integralgleichungen werden weiterhin nach Merkmalen unterschieden, die im folgenden verbal charakterisiert werden. Fredholmsche Integralgleichung: Das Integral erstreckt sich über ein 1 festes Intervall des R oder einen allgemeineren festen Integrationsbereich (Teilmenge des Rd, Kurve, Oberfläche etc.l. Voltarrasche Integralgleichung: Das Integral erstreckt sich über einen mit der Variablen x sich verändernden Bereich (vgl. (2}). Unabhängig von dieser Kennzeichnung ist die folgende Einteilung: Integralgleichung 1. Art: Die unbekannte Funktion kommt nur im Integranden vor. Integralgleichung 2. Art: Die unbekannte Funktion erscheint auch außerhalb des Integranden. Wie bei Differentialgleichungen unterscheidet man lineare Integralgleichungen: Die Gleichung ist linear in der unbe kannten Funktion. Im sonstigen Fall spricht man von einer nichtlinearen Integralgleichung. Eine weitere Unterteilung ist von den vorhergehenden Charak terisierungen unabhängig und betrifft die Integralbildung: reguläre Integralgleichung: Das Integral existiert als eigentliches Integral. schwach singuiäre Integralgleichung: Das Integral existiert als uneigentliches Integral.
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Hardcover
- 88 Seiten
- Erschienen 2021
- Auer Verlag in der AAP Lehr...
- Hardcover
- 240 Seiten
- Erschienen 2009
- Springer
- Hardcover
- 560 Seiten
- Erschienen 2021
- Cornelsen Lernhilfen
- Hardcover
- 296 Seiten
- Erschienen 2007
- Springer
- Hardcover
- 400 Seiten
- Erschienen 2007
- Cornelsen Verlag
- Hardcover
- 784 Seiten
- Erschienen 1995
- Cornelsen Lernhilfen
- Hardcover
- 440 Seiten
- Erschienen 1987
- Vieweg + Teubner
- Hardcover
- 320 Seiten
- Erschienen 1988
- Springer-Verlag Berlin Heid...
- Hardcover
- 344 Seiten
- Erschienen 1970
- De Gruyter
- paperback
- 244 Seiten
- Erschienen 1978
- Springer Berlin Heidelberg