Big Data Factories
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
The book proposes a systematic approach to big data collection, documentation and development of analytic procedures that foster collaboration on a large scale. This approach, designated as "data factoring" emphasizes the need to think of each individual dataset developed by an individual project as part of a broader data ecosystem, easily accessible and exploitable by parties not directly involved with data collection and documentation. Furthermore, data factoring uses and encourages pre-analytic operations that add value to big data sets, especially recombining and repurposing. The book proposes a research-development agenda that can undergird an ideal data factory approach. Several programmatic chapters discuss specialized issues involved in data factoring (documentation, meta-data specification, building flexible, yet comprehensive data ontologies, usability issues involved in collaborative tools, etc.). The book also presents case studies for data factoring and processing that can lead to building better scientific collaboration and data sharing strategies and tools. Finally, the book presents the teaching utility of data factoring and the ethical and privacy concerns related to it. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com von Matei, Sorin Adam und Jullien, Nicolas und Goggins, Sean P.
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Sorin Matei is a Professor at Brian Lamb School of Communication at Purdue University. His focus areas are computational social science, collaborative content production, and data storytelling. Nicolas Jullien is an Associate Professor at the LUSSI Department of Telecom Bretagne. His research interests are in open and online communities. Sean Patrick Goggins is an Associate Professor at Missouri's iSchool, with courtesy appointments as core faculty in the University of Missouri's Informatics Institute and Department of Computer Science.
- hardcover
- 792 Seiten
- Erschienen 2017
- Springer
- hardcover
- 264 Seiten
- Erschienen 1999
- Addison-Wesley
- Kartoniert
- 352 Seiten
- Erschienen 2021
- mitp Verlags GmbH & Co. KG
- hardcover
- 383 Seiten
- Erschienen 2015
- The MIT Press
- Hardcover
- 312 Seiten
- Erschienen 2001
- Springer
- Gebunden
- 440 Seiten
- Erschienen 2017
- De Gruyter Oldenbourg
- Gebunden
- 302 Seiten
- Erschienen 2008
- Springer
- Gebunden
- 320 Seiten
- Erschienen 2019
- Carl Hanser Verlag GmbH & C...
- Hardcover
- 432 Seiten
- Erschienen 2021
- MIT Connection Science & En...
- paperback
- 300 Seiten
- Erschienen 2015
- Addison-Wesley Professional
- Gebunden
- 283 Seiten
- Erschienen 2016
- Carl Hanser Verlag GmbH & C...
- Gebunden
- 250 Seiten
- Erschienen 2011
- Springer
- Gebunden
- 295 Seiten
- Erschienen 2014
- Springer
- hardcover
- 643 Seiten
- Erschienen 2020
- Springer
- Kartoniert
- 179 Seiten
- Erschienen 2018
- Springer
- Gebunden
- 179 Seiten
- Erschienen 2019
- Springer
- Hardcover
- 320 Seiten
- Erschienen 2006
- John Wiley & Sons Inc




