
Deep Learning and Convolutional Neural Networks for Medical Image Computing
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database. von Lu, Le und Yang, Lin und Carneiro, Gustavo und Zheng, Yefeng
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Dr. Le Lu is a Staff Scientist in the Radiology and Imaging Sciences Department of the National Institutes of Health Clinical Center, Bethesda, MD, USA. Dr. Yefeng Zheng is a Senior Staff Scientist at Siemens Healthcare Technology Center, Princeton, NJ, USA. Dr. Gustavo Carneiro is an Associate Professor in the School of Computer Science at The University of Adelaide, Australia. Dr. Lin Yang is an Associate Professor in the Department of Biomedical Engineering at the University of Florida, Gainesville, FL, USA.
- Gebunden
- 636 Seiten
- Erschienen 2011
- Springer
- Hardcover
- 256 Seiten
- Erschienen 2023
- Wiley & Sons
- paperback
- 590 Seiten
- Erschienen 2021
- MedMantra, LLC
- Gebunden
- 282 Seiten
- Erschienen 2017
- Springer
- Kartoniert
- 360 Seiten
- Erschienen 2018
- Manning
- Kartoniert
- 964 Seiten
- Erschienen 2018
- Springer
- Hardcover
- 272 Seiten
- Erschienen 1996
- Wiley-Interscience
- Kartoniert
- 361 Seiten
- Erschienen 2017
- Manning
- plastic_comb
- 880 Seiten
- Erschienen 2004
- Thieme
- hardcover
- 458 Seiten
- Erschienen 2015
- Wiley-VCH
- hardcover -
- Erschienen 1995
- Enke,
- Gebunden
- 174 Seiten
- Erschienen 2011
- Springer
- Kartoniert
- 350 Seiten
- Erschienen 2020
- O'Reilly Media
- Hardcover
- 288 Seiten
- Erschienen 2024
- Wiley
- hardcover
- 576 Seiten
- Erschienen 1990
- Butterworth-Heinemann Ltd