
Statistical Theory and Inference
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This text is for a one semester graduate course in statistical theory and covers minimal and complete sufficient statistics, maximum likelihood estimators, method of moments, bias and mean square error, uniform minimum variance estimators and the Cramer-Rao lower bound, an introduction to large sample theory, likelihood ratio tests and uniformly most powerful tests and the Neyman Pearson Lemma. A major goal of this text is to make these topics much more accessible to students by using the theory of exponential families.Exponential families, indicator functions and the support of the distribution are used throughout the text to simplify the theory. More than 50 ``brand name" distributions are used to illustrate the theory with many examples of exponential families, maximum likelihood estimators and uniformly minimum variance unbiased estimators. There are many homework problems with over 30 pages of solutions. von Olive, David J.
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
David Olive is an Associate Professor in the Department of Mathematics at Southern Illinois University.
- paperback
- 237 Seiten
- Erschienen 1988
- Springer
- paperback
- 306 Seiten
- Erschienen 2017
- Cambridge University Press
- Hardcover
- 480 Seiten
- Erschienen 1980
- Wiley-Interscience
- Taschenbuch
- 448 Seiten
- Erschienen 2013
- Wiley
- Hardcover
- 184 Seiten
- Erschienen 2008
- Cambridge University Press
- hardcover
- 502 Seiten
- Erschienen 2007
- Springer
- Kartoniert
- 357 Seiten
- Erschienen 2014
- Routledge