
The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar
Beschreibung
This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states. von Debussche, Arnaud und Imkeller, Peter und Högele, Michael
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
Kundenbewertungen
- Hardcover
- 408 Seiten
- Wiley John + Sons
- Hardcover
- 477 Seiten
- Deutsch Harri GmbH
- Hardcover
- 590 Seiten
- -
- Hardcover -
- Gruyter, Walter de GmbH