
Approximation Theory
Kurzinformation



inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost all known linear approximation operators of ap proximation theory including: trigonometric operators and algebraic in terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP. von Anastassiou, George A. und Gal, Sorin G.
Produktdetails

So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
- Kartoniert
- 408 Seiten
- Erschienen 2003
- Springer
- paperback
- 232 Seiten
- Erschienen 1991
- Springer
- paperback
- 374 Seiten
- Erschienen 1974
- The MIT Press
- hardcover
- 337 Seiten
- Erschienen 2021
- Springer
- Hardcover
- 176 Seiten
- Erschienen 1990
- Friedrich Vieweg & Sohn...
- paperback
- 388 Seiten
- Erschienen 2009
- Springer
- Gebundene Ausgabe -
- Erschienen 1995
- Teubner Verlag
- paperback
- 296 Seiten
- Erschienen 2008
- Springer
- Hardcover
- 456 Seiten
- Erschienen 2000
- Wiley-Interscience
- paperback
- 237 Seiten
- Erschienen 1988
- Springer
- hardcover
- 514 Seiten
- Erschienen 1982
- Birkhäuser Verlag