Real and Complex Analysis
Kurzinformation
inkl. MwSt. Versandinformationen
Artikel zZt. nicht lieferbar
Artikel zZt. nicht lieferbar

Beschreibung
This is the second volume of the two-volume book on real and complex analysis. This volume is an introduction to the theory of holomorphic functions. Multivalued functions and branches have been dealt carefully with the application of the machinery of complex measures and power series. Intended for undergraduate students of mathematics and engineering, it covers the essential analysis that is needed for the study of functional analysis, developing the concepts rigorously with sufficient detail and with minimum prior knowledge of the fundamentals of advanced calculus required. Divided into four chapters, it discusses holomorphic functions and harmonic functions, Schwarz reflection principle, infinite product and the Riemann mapping theorem, analytic continuation, monodromy theorem, prime number theorem, and Picard's little theorem. Further, it includes extensive exercises and their solutions with each concept. The book examines several useful theorems in the realm of real and complex analysis, most of which are the work of great mathematicians of the 19th and 20th centuries. von Sinha, Rajnikant
Produktdetails
So garantieren wir Dir zu jeder Zeit Premiumqualität.
Über den Autor
RAJNIKANT SINHA is former professor of mathematics at Magadh University, Bodh Gaya, India. A passionate mathematician, Prof. Sinha has published numerous interesting research findings in international journals and books, including Smooth Manifolds (Springer) and the contributed book Solutions to Weatherburn's Elementary Vector Analysis. His research focuses on topological vector spaces, differential geometry and manifolds.
- hardcover
- 280 Seiten
- Erschienen 2015
- Wiley
- Kartoniert
- 310 Seiten
- Erschienen 2007
- De Gruyter Oldenbourg
- paperback
- 424 Seiten
- Erschienen 2015
- Springer
- paperback
- 156 Seiten
- Erschienen 2021
- Springer
- Gebunden
- 488 Seiten
- Erschienen 2009
- Springer
- hardcover
- 496 Seiten
- Erschienen 2002
- Springer
- Hardcover
- 464 Seiten
- Erschienen 2006
- Birkhäuser
- Kartoniert
- 300 Seiten
- Erschienen 2016
- Springer Spektrum
- Kartoniert
- 256 Seiten
- Erschienen 2012
- Springer Spektrum
- Hardcover
- 360 Seiten
- Erschienen 2006
- Cornelsen Verlag
- Kartoniert
- 556 Seiten
- Erschienen 2021
- Springer Spektrum




